ECCV 2022

Spatiotemporal Self-attention Modeling with Temporal Patch Shift for Action Recognition

Wangmeng Xiang^{1,2*}, Chao Li², Biao Wang², Xihan Wei², Xian-Sheng Hua², and Lei Zhang^{1**}

¹ The Hong Kong Polytechnic University, Hong Kong SAR, China {cswxiang,cslzhang}@comp.polyu.edu.hk ² DAMO Academy, Alibaba, Hangzhou, China {lllcho.lc,wb.wangbiao,xihan.wxh,xiansheng.hxs}@alibaba-inc.com

Reviewed by Susang Kim

Contents

Motivation
 Preliminaries
 Methods
 Experiments
 Conclusion

1.Introduction : Action Recognition

Push Left Move Down

Uncover

Cover

Push Right

Move Up

Take

Push

Video based action recognition 2D image-based => 3D(+temporal) video-based tasks

MLCF

https://www.yangsanilbo.com/news/articleView.html?idxno=29589

 $\mathbf{Z} \in \mathbb{R}^{D \times T \times N} \quad X \in \mathbb{R}^{F \times H \times W \times C}$

R. Goyal, et al. "The something something video database for learning and evaluating visual common sense," ICCV, 2017.

2. Preliminaries : Self-Attention in Space and Time

A. Arnab et al., "ViViT: A Video Vision Transformer," ICCV, 2021.

M. Kim et al., "Relational Self-Attention: What's Missing in Attention for Video Understanding," NeurIPS, 2021.

2. Preliminaries : Shift Operation

window: 3×3×3=27

Shift operation does not hold any parameter or arithmetic operation

1. Shift Operation Meets Vision Transformer : The attention layers in ViT are substituted by shift operation

Shifts the channels along the temporal dimension,

3D tokens: $T' \times H' \times W' = 8 \times 8 \times 8$

Window size: $P \times M \times M = 4 \times 4 \times 4$

Liu, Ze, et al. "Video swin transformer." CVPR 2022.

2. Temporal Shift Module (TSM) :

 $\hat{\mathbf{z}}^{l} = 3$ DW-MSA (LN (\mathbf{z}^{l-1})) + \mathbf{z}^{l-1} ,

 $\hat{\mathbf{z}}^{l+1} = 3\text{DSW-MSA}\left(\text{LN}\left(\mathbf{z}^{l}\right)\right) + \mathbf{z}^{l},$

 $\mathbf{z}^{l+1} = \text{FFN}\left(\text{LN}\left(\hat{\mathbf{z}}^{l+1}\right)\right) + \hat{\mathbf{z}}^{l+1},$

 $\mathbf{z}^{l} = \text{FFN}\left(\text{LN}\left(\hat{\mathbf{z}}^{l}\right)\right) + \hat{\mathbf{z}}^{l},$

Wang, Guangting, et al. "When shift operation meets vision transformer.", AAAI 2022 Lin, Ji et al, "Tsm: Temporal shift module for efficient video understanding." ICCV 2019. A Vision Transformer without Attention : https://keras.io/examples/vision/shiftvit/

window partition

cyclic shift

Video Swin Transformer blocks(3D shifted window)

Laver 1

window: 2×2×2=8

3.Method : Overview of Temporal Patch Shift (TPS)

TPS Block

3.Method : Patch and Channel shifts

MLCF

Fig. 3. An example of patch shift and channel shift for consecutive frames.

Patch Shift	Channel Shift				
Space-wise sparse and Channel-wise dense	Space-wise dense and Channel-wise sparse.				
the global channel information for each patch	partial channel information				
both can capture the motion of action / zero parameter and low-cost temporal modeling methods					

3.Method : Notation of Temporal Patch Shift (TPS)

3.Method : Shift Patterns

We use cyclic padding in for patches that exceed the temporal boundary

Pattern C

3.Method : Patch Shift Transformers(PST)

Insert one TPS(Temporal Patch Shift) block for every two SA modules (to alleviate gathering information in a sparse manner and sacrifice selfattention within frames)

Temporal Channel Shift (TCS)

Fig. 4. An overview of building blocks and variants of PST.

 $\begin{aligned} \hat{\mathbf{Z}}_{l} &= \mathrm{SA}(\mathrm{LN}(\mathbf{Z}_{l-1})) + \mathbf{Z}_{l-1}, \\ \mathbf{Z}_{l} &= \mathrm{FFN}(\mathrm{LN}(\hat{\mathbf{Z}}_{l})) + \hat{\mathbf{Z}}_{l}, \\ Q_{l}, K_{l}, V_{l} &= W_{l}^{Q} \mathbf{Z}_{l-1}, W_{l}^{K} \mathbf{Z}_{l-1}, W_{l}^{V} \mathbf{Z}_{l-1} \\ \hat{\mathbf{Z}}_{l} &= \mathrm{SoftMax}(Q_{l} K_{l}^{T} / \sqrt{d}) V_{l}, \end{aligned}$

$$\begin{aligned} \{\mathbf{i}', \mathbf{Z}_{l-1}'\} &= \operatorname{PatchShift}(\mathbf{p}, \mathbf{i}, \mathbf{Z}_{l-1}), \\ Q_l, K_l, V_l &= W_l^Q \mathbf{Z}_{l-1}', W_l^K \mathbf{Z}_{l-1}', W_l^V \mathbf{Z}_{l-1}', \\ \hat{\mathbf{Z}} &= \operatorname{ShiftBack}(\operatorname{SoftMax}(Q_l K_l^T / \sqrt{d} + B(\mathbf{i}')) V_l), \end{aligned}$$

3.Method : the computation burdens

Bertasius, G., Wang, H., & Torresani, Is space-time attention all you need for video understanding?, ICML 2021

4. Experiments : Setup

[Models]

Backbone : Swin Transformer with PST-T, PST-B an increase in model size 32 frames as input and the tubelet embedding strategy in ViViT with patch size 2×4×4 by default. PST-T† and PST-B†, which doubles the temporal attention window to 2 with slightly increased computation

[Training]

Images to 256 and then apply center cropping of 224×224. random flip, AutoAugment for augmentation. AdamW with the cosine learning rate schedule for network training

[Testing]

On Something-something V1&V2 and Diving-48 V2, uniform sampling and center crop (or three-crop) testing are adopted. On Kinetics400, we adopt the dense sampling strategy as in with 4 view, three-crop testing.

4. Experiments : Datasets

Something-something v1 & v2 (SS-V1 & V2) are both large-scale action recognition benchmarks.

including 108k and 220k action clips. Both are 174 classes.

temporal related

Pouring [something]

Kinetics400 is a action recognition dataset, which contains 400 classes, with at least 400 video clips for

each class. Each clip is trimmed to around 10s.

- less temporal related

riding a bike

Diving-48 V2 is fine-grained action benchmark that is heavily dependent on temporal modeling containing

18k videos with 48 diving classes

temporal related

['Forward', '15som', 'NoTwis', 'PIKE']

Kay, Will, et al. "The kinetics human action video dataset." arXiv preprint arXiv:1705.06950 (2017).

4. Experiments : Ablation study

All the experiments are conducted on SS V1 with Swin-Tiny as backbone (IN-1K pretrained).

(b)

(a) Patch distribution

Distribution	Top-1	Top-5
None	40.6	71.4
Center-one	45.3	75.1
1/4 Uneven	45.3	75.5
Even-2	46.2	76.1
Even-3	48.6	77.8

 Pattern
 Top-1
 Top-5

 A-3
 48.6
 77.8

 B-4
 50.7
 79.3

 C-9
 51.8 80.3

 D-16
 50.0
 79.5

Shift patterns

increases when the temporal field grows.

(c) Number of stages with TPS

	Sta	age		Top 1	Top 5
1	2	3	4	10p-1	Top-5
\checkmark				47.3	77.0
\checkmark	\checkmark			48.4	77.6
\checkmark	\checkmark	\checkmark		50.4	79.1
\checkmark	\checkmark	\checkmark	\checkmark	51.8	80.3

the number of shifting of the total patches, shifting 1/4 patches to previous and 1/4 to next (even-3).

(d) Shift back, Alternative shift and shift RPE

Shift back	Alternative	Shift RPE	Top-1	Top-5
	\checkmark	\checkmark	47.3	77.0
\checkmark		\checkmark	46.4	76.6
\checkmark	\checkmark		46.1	76.0
\checkmark	\checkmark	\checkmark	51.8	80.3

TPS block for every two SA modules (alternative shift in short) Shift RPE represents whether relative positions are shifted alongside patches.

(e) Comparison of spatiotemporal attentions

	FLOPs	Memory	Top-1	Top-5
Avgpool	72G	3.7G	40.6	71.4
Joint	106G	20.2G	51.5	80.0
Local	88G	11G	49.9	79.2
Sparse	72G	4.0G	42.7	74.0
Channel-only	72G	3.7G	51.2	79.7
Patch-only	72G	3.7G	51.8	80.3
\mathbf{PST}	72G	3.7G	52.2	80.3

4.Experiments : Comparison with SOTA

Table 3. Comparisons with the other methods on Something-something V1 & V2.

Model	Protrain	Crops × Clips	FLOP	Parame	Stł	nv1	Stl	ıv2
Model	1 ICuam	Crops × Crips	FLOI 5	1 arams	Top-1	Top-5	Top-1	Top-5
TSM [22]	K400	3×2	65G	24.3M	-	-	63.4	88.5
TEINet [26]	IN-1K	1×1	66G	30.4M	49.9	-	62.1	-
TEA [20]	IN-1K	1×1	70G	24.3M	51.9	80.3	-	-
TDN [38]	IN-1K	1×1	72G	24.8M	53.9	82.1	65.3	89.5
ACTION-Net [42]	IN-1K	1×1	70G	$28.1 \mathrm{M}$	-	-	64.0	89.3
SlowFast R101, 8x8 [13]	K400	3×1	106G	53.3M	-	-	63.1	87.6
MSNet [18]	IN-1K	1×1	101G	24.6M	52.1	82.3	64.7	89.4
blVNet [11]	IN-1K	1×1	129G	40.2M	-	-	65.2	90.3
Timesformer-HR [2]	IN-21K	3×1	1703G	121.4M	-	-	62.5	-
ViViT-L/16x2 []	IN-21K	3×1	903G	$352.1\mathrm{M}$	-	-	65.9	89.9
MViT-B, 64×3 [9]	K400	3×1	455G	36.6M	-	-	67.7	90.9
Mformer-L [29]	K400	3×1	1185G	86M	-	-	68.1	91.2
X-ViT 3	IN-21K	3×1	283G	92M	-	-	66.2	90.6
SIFAR-L [10]	K400	3×1	576G	196M	-	-	64.2	88.4
Video-Swin [25]	K400	3×1	321G	88.1M	-	-	69.6	92.7
1	IN-1K	1×1			52.2	80.3	65.7	90.2
DST T	IN-1K	3×1			52.8	80.5	66.4	90.2
151-1	K400	1×1	72G	$28.5 \mathrm{M}$	53.2	82.2	66.7	90.6
	K400	3×1			53.6	82.2	67.3	90.5
$PST-T\dagger$	K400	3×1	74G		54.0	82.3	67.9	90.8
1	IN-21K	1×1			55.3	81.9	66.7	90.7
DST B	IN-21K	3×1			55.6	82.2	67.4	90.9
	K400	1×1	247G	88.8M	57.4	83.2	68.7	91.3
I	K400	3×1			57.7	83.4	69.2	91.9
PST-B†	K400	3×1	252G		58.3	83.9	69.8	93.0

† denotes doubles the temporal attention window

MLCF

4. Experiments : Comparison with SOTA

Table 4. Comparisons with the state-of-the-art methods on Kinetics400.

Model	Pretrain	$\mathrm{Crops}\times\mathrm{Clips}$	FLOPs	Params	Top-1	Top-5
I3D 4	IN-1K	1×1	108G	28.0M	72.1	90.3
NL-I3D [41]	IN-1K	6×10	32G	35.3M	77.7	93.3
CoST [19]	IN-1K	3×10	33G	35.3M	77.5	93.2
SlowFast-R50 [13]	IN-1K	3×10	36G	32.4M	75.6	92.1
X3D-XL [12]	-	3×10	48G	11.0M	79.1	93.9
TSM [22]	IN-1K	3×10	65G	24.3M	74.7	91.4
TEINet [26]	IN-1K	3×10	66G	30.4M	76.2	92.5
TEA [20]	IN-1K	3×10	70G	24.3M	76.1	92.5
TDN [38]	IN-1K	3×10	72G	24.8M	77.5	93.2
Timesformer-L 2	IN-21K	3×1	2380G	121.4M	80.7	94.7
ViViT-L/16x2 [1]	IN-21K	3×1	3980G	$310.8 \mathrm{M}$	81.7	93.8
X-ViT 3	IN-21K	3×1	283G	92M	80.2	94.7
MViT-B, 32×3 9	IN-21K	1×5	170G	36.6M	80.2	94.4
MViT-B, 64×3 9	IN-21K	3×3	455G	36.6M	81.2	95.1
Mformer-HR [29]	K400	3×1	959G	86M	81.1	95.2
TokenShift-HR 45	IN-21K	3×10	2096G	$303.4\mathrm{M}$	80.4	94.5
SIFAR-L 10	IN-21K	3×1	576G	196M	82.2	95.1
Video-Swin 24	IN-21K	3×4	282G	88.1M	82.7	95.5
PST-T	IN-1K	3×4	72G	28.5M	78.2	92.2
$PST-T^{\dagger}$	IN-1K	3×4	74G	28.5M	78.6	93.5
PST-B	IN-21K	3×4	247G	88.8M	81.8	95.4
PST-B†	IN-21K	3×4	252G	88.8M	82.5	95.6

PST-B† achieves 82.5% with less computation overheads

4. Experiments : Latency, throughput and memory

Table 6. Memory and latency comparison on Something-something V1&V2 (Measured on NVIDIA Tesla V100 GPU)

Mathada	FLOD	Danam	Momowy	Tatanan I	Throughput	Sthv1		Sthv2	
Methods	FLOPS	Param	Memory	Latency	Infoughput	Top-1	Top-5	Top-1	Top-5
2D Swin-T	72G		1.7G	29ms	35.5 v/s	40.6	71.4	56.7	84.1
Video-Swin-T 24	$106G(\uparrow 34G)$	28.5M	$3.0G(\uparrow 1.3G)$	$62 \text{ms}(\uparrow 33 \text{ms})$	17.7 v/s	51.5	80.0	65.7	90.1
PST-T	72G		1.7G	$31 \text{ms}(\uparrow 2 \text{ms})$	34.7 v/s	52.2	80.3	65.7	90.2
2D Swin-B	247G		2.2G	$71 \mathrm{ms}$	15.5 v/s	-	-	59.5	86.3
Video-Swin-B 24	321G(† 74G)	88.8M	$3.6G(\uparrow 1.4G)$	147ms(† 76ms)	<u>7.9 v/s</u>			69.6	92.7
PST-B†	$252G(\uparrow 5G)$		$2.4G(\uparrow 0.2G)$	$81 \text{ms}(\uparrow 10 \text{ms})$	13.8 v/s			69.8	93.0

Table 5. Comparisons with the other methods on Diving-48 V2.

Model	Pretrain	$\mathrm{Crops}\times\mathrm{Clips}$	FLOPs	Params	Top-1	Top-5
SlowFast R101, 8x8 13	K400	3×1	106G	53.3M	77.6	-
Timesformer 2	IN-21K	3 imes 1	196G	121.4M	74.9	-
Timesformer-HR 2	IN-21K	3 imes 1	1703G	121.4M	78.0	-
Timesformer-L 2	IN-21K	3 imes 1	2380G	121.4M	81.0	-
ד ד	IN-1K	3×1	72G		79.2	98.2
191-1	K400	3 imes 1	72G	28.5M	81.2	98.7
PST-T†	K400	3 imes 1	74G		82.1	98.6
DST_B	IN-21K	3 imes 1	247G		83.6	98.5
101-D	K400	3 imes 1	247G	88.1M	85.0	98.6
PST-B†	K400	3 imes 1	252G		86.0	98.6

4. Experiments : Additional results on DeiT backbone

Table 7. More backbones experiments on Kinetics400.

Model	Pretrain	$\mathrm{Crops}\times\mathrm{Clips}$	FLOPs	Params	Top-1	Top-5
DeiT-S-2D [36]	IN-1K	3×4	74G	22M	73.0	90.7
DeiT-S-TSM	IN-1K	3×4	74G	22M	74.8	91.6
DeiT-S-TPS	IN-1K	3×4	74G	22M	75.3	91.8

 14×14 image patches(center cropping of 224×224 -16x16 tokens) at every layer and an additional class token. We insert a TPS module in every two blocks of DeiT.

4.Experiments : Visualization results

MLCF

PST can learn to focus on the motion of objects

5.Conclusions

Discovering the difference between Patch Shift and Channel Shift.

TPS is a plug-and-play module and can be easily embedded into many existing 2D transformers without additional parameters and computation costs.

The resulted PST is **highly cost-effective in both computation and memory.** - PST achieved competitive performance comparing to previous methods on the datasets of Something-something V1&V2, Diving-48 and Kinetics400.

PST achieved a good balance between accuracy and computational cost for effective action recognition.

Table 6: Ablation study on the 3D shifted window approach with Swin-T on K400.

	Top-1	Top-5
w. 3D shifting	78.8	93.6
w/o temporal shifting	78.5	93.5
w/o 3D shifting	78.1	93.3

Liu, Ze, et al. "Video swin transformer." CVPR 2022.

Thanks Any Questions?

You can send mail to Susang Kim(<u>healess1@gmail.com</u>)