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1.Introduction - Autonomous Driving
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Liu, Mingyu, et al. "A survey on autonomous driving datasets: Statistics, annotation quality, and a future outlook." Transactions on Intelligent Vehicles 2024.
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1.Introduction - Roadmap of End-to-end Autonomous Driving
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1.Introduction - End-to-End Autonomous Driving (E2EAD)
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1.Introduction- Future Trends ACl AP
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1.Introduction - nuScenes (CVPR 2020)

Sensor Details
6x Camera RGB, 12Hz capture frequency, 1/1.8” CMOS sensor,
1600 x 900 resolution, auto exposure, JPEG com-
pressed _2 -
Ix Lidar Spinning, 32 beams, 20Hz capture frequency, 360° 1
horizontal FOV, —30° to 10° vertical FOV, < 70m
range, +=2cm accuracy, up to 1.4 M points per second.
5x Radar < 250m range, 77GHz, FMCW, 13Hz capture fre-
quency, =0.1km/h vel. accuracy — X-axis
GPS & IMU | GPS, IMU, AHRS. 0.2° heading, 0.1° roll/pitch, e i
20mm RTK positioning, 1000Hz update rate Figure 4. Sensor setup for our data collection platform.

Table 2. Sensor data in nuScenes.
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Figure 5. Spatial data coverage for two nuScenes locations.
Colors indicate the number of keyframes with ego vehicle poses i
within a 100m radius across all scenes. Radar ‘ Lidar

Caesar, Holger, et al. "nuscenes: A multimodal dataset for autonomous driving.” CVPR. 2020. "Ped with pet, bicycle, car makes a u-turn, lane change, peds crossing crosswalk"



2.Related Works - BEVFormer (ECCV 2022)

What's in here at timestamp t 2

Converting multi-camera image features to bird’s-eye-
view (BEV) features can provide a unified surrounding
environment representation for various autonomous
driving perception tasks.
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Li, Z., et al. "BEVFormer: Learning Bird’s-Eye-View Representation from Multi-Camera Images via Spatiotemporal Transformers.”, ECCV 2022.
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2.Related Works - Unified Autonomous Driving (UniAD) (CVPR 2023)
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2.Related Works — Vectorized Autonomous Driving (VAD) (ICCV 2023)

VAD (Vectorized Autonomous Driving), an end-to-end vectorized
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Bo Jiang, et al. VAD: Vectorized Scene Representation for Efficient Autonomous Driving. ICCV 2023.




2.Related Works - TokenLearner (NeurlPS 2021) Object clss
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Ryoo, Michael S., et al. "Tokenlearner: What can 8 learned tokens do for images and videos?." NeurlPS 2021.
Spatial Attention : https://paperswithcode.com/method/spatial-attention-module
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2.Related Works - TokenLearner (NeurlPS 2021)

1) We enable the adaptive tokenization so that the tokens can be dynamically selected conditioned on
the input.

2) This also effectively reduces the total number of tokens for the transformer, which is particularly
beneficial considering that there are many tokens in videos and the computation is quadratic to the
number of tokens.

3) Finally, we provide an ability for each subsequent layer to learn to rely on different space-time
tokenizations, potentially allowing different layers to capture different aspects of the video.

Input tensor

Ryoo, Michael S., et al. "Tokenlearner: What can 8 learned tokens do for images and videos?." NeurlPS 2021.



2.Related Works - Motion aware Layer Normalization (MLN)

Motion-aware layer normalization (MLN) enables the modeling of object movement.
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3.Method - Comparison of Various End-to-End Paradigms

Fig. 2(a), Existing methods typically extract all perception elements by following previous BEV

perception paradigms.

Fig. 2(b), SSR directly extracts only the essential perception elements in the guidance of
navigation commands, thereby minimizing redundancy.
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_Perception_

Detection

AN
™~

Motion
Multi-View
Image Features

BEV Feature

Occupancy

(a) Task-Specific Supervised Paradigm

Navigation
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Navigation
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(b) Adaptive Unsupervised Paradigm

Figure 2: Comparison of Various End-to-End Paradigms. Compared to previous task-specific su-
pervised paradigms, our adaptive unsupervised approach takes full advantage of end-to-end frame-
work by utilizing navigation-guided perception, without the need to differentiate between sub-tasks.



3.Method - Sparse Scene Representation (SSR)

SSR delivers SOTA on the nuScenes dataset, with minimal computational overhead.

SSR decreases average L2 error by 0.28 meters and reduces the average collision rate by 51.6%
relatively compared to UniAD, even without any annotations.

SSR achieves superior performance on CARLA’s Town05 Long benchmark.

SSR reduces training time to 1/13th of that required by UniAD and is 10.9x faster during inference.

SSR has the potential to manage large-scale data in real-time applications.
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Figure 1: Performance Comparison of Various Methods in Speed and Accuracy on nuScenes.



3.Method — Overview of SSR

SSR has two components: the purple part, used in both training and inference.

the gray part, used only during training.
SSR's core is the Scenes TokenLearner module, which extracts crucial scene information using 16 tokens
instead of dense BEV feature numerous queries(hundreds). These sparse tokens generate the planning
trajectory and are enhanced by a self-supervised future feature predictor for improved representation.
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3.Method — BEV Feature Construction & Scene Queries

The vision-based E2ZEAD model predicts the planning trajectory T, a set of points in BEV space.
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3.Method — Planning Based on Sparse Scene Representation

Navigation command : cmd
(Trun Right, Turn Left, Go Straight)

FrameT e = [r—
I g -
1 | — |
| Navigation > | 1 ulti-Modal =

| (S [ Wan(LTn?‘QSE:IES ’E_‘;—L :
| Vol A~ !
i | r!

I— . .
N - - | L p + 1
|~ \\\ oKeENnLearnear —_E ecoder I

e A ] 1 . \ 7
- BEV Fealure | Scene Queries :
| I _1. ______________ — = =

Scene Queries : S;

T = SBZGCt(A[LP( W t): CTnd)' W; = CrossAttention(Wy, S;, S¢).

T € ]RNL“XZ
the number of future timestamps x 2(x,y) A way point query represents a spatial location or trajectory
point that the model uses to predict the agent's path.
a set of way point queries : W, € RNm*Nex¢
Eimxi — HTGT — T”l yP a t
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3.Method — Structure of Modules (Scene Token Learner & Future Feature Predictor)
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BEV features provide rich perception information but
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3.Method — Scenes Token Learner (STL)

Navigation
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enhance the scene queries



3.Method — Future Feature Predcitor (FFP)

Scene Queries

St I\ Future Feature Predictor Prioritize temporal context to enhance
T € RNex2 | - ' " Mt Layer scene representation through self-

(x.y) | e _“' “N T seiratention supervision rather th'an percgptlon
sub-tasks. If our predicted actions
correspond to real actions, the predicted

< future scenes should closely resemble
i SO | the actual future scenes.
\ (Scene Queries, Trajectory, Current BEV)
\ __Cun'enl BEV Feature Future BEV Fealure/-

D, = J\ILN(St, T)- Motion aware Layer Normalization (MLN) helps current scene queries encode motion information(T)

St = SelfAttention(Dt). to predict the future scene queries $;,; € RNsXC

5 _ . Q D - recover the BEV feature from the predicted
BH"l = T'okenFuser (SH‘l’ Bt) _L%?,{Bt) @ SH’lf scene queries for further self-supervision.

Biyy € RFXWXC MLP with the sigmoid function to remap RF*W*¢ —, RAXWxNs

Ebev — HBH—l — Bt—l—ll|2' L2 loss with the real future BEV feature



3.Method — Overall Architecture (recap)
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4.Experiments — Dataset

Behavior & Planning Task Evaluation

Interaction

Strategy Metrics

nuScenes @ 55h ]
. 4y o Open-loop - L2Error
Real-world Waymo Vi i Reakstic ( Log-replay) - Collision Rate
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Il Unlimited . oy
generated Carla /c\ i ML-based (Interactive) - Dnvmg Score =
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nuScene : L2 (m) error measures trajectory accuracy, while collision rate (%) quantifies collisions with objects.
All metrics are calculated in 3s future horizon with a 0.5s interval and evaluated at 1s, 2s and 3s.

CARLA : Route Completion (RC) measures the percentage of the route completed, Infraction Score (IS)
quantifies infractions(pedestrians, vehicles, road layouts, signals) Driving Score (DS) is the product of RC and IS.
Hongyang Li, End-to-End Autonomy: A New Era of Self-Driving CVPR 2024 Tutorial https://wayve.ai/cvpr-e2ead-tutorial/
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4.Experiments — Implementation Details

Settings We build up SSR on VAD and follow the setting of VAD-Tiny.

We adopt ResNet-50 as image backbone operating at an image resolution of 640 x 360.

The BEV representation is generated at a 100 x 100 resolution and then compressed into sparse
scene tokens with shape 16 x 256.

The number of navigation commands remains 3 as prior works.

Other settings follow VAD-Tiny unless otherwise specified.

In closed-loop simulation, we utilize ResNet-34 as the image backbone, resizing the

input image size to 900 x 256.

The target point is concatenated with driving commands as the navigation information.

The Trajectory-Guided Control Prediction (TCP) head is applied for planning module.

Training Parameters Our open-loop model is trained for 12 epochs on 8 NVIDIA RTX 3090 GPUs
with a batch size of 1 per GPU.

The training phase costs about 11 hours which is 13x faster than UniAD.

We utilize the AdamW optimizer with a learning rate set to 5x10-5.

The weight of imitation loss and BEV loss is both 1.0.

The closed-loop model is trained for 60 epochs on 4 NVIDIA RTX 3090 GPUs with a batch size of 32
per GPU.

The learning rate is set to 1x10—-4 while being halved after 30 epochs.



4.Experiments — Comparison

of SOTA on the nuScenes dataset (Open-Loop)

Method Auxiliary Task L2 (m) Collision Rate (%) FPS
Is 2s 3s  Avg. Is 2s 3s Avg.

NMPo (Zeng et al., 2019) Det & Motion 053 125 267 148 0.04 0.12 087 034 =
FFo (Hu et al., 2021) FreeSpace 055 120 254 143 0.06 0.17 1.07 043 =
EO¢ (Khurana et al., 2022) FreeSpace 0.67 136 278 1.60 0.04 009 0.88 033 -
ST-P3 (Hu et al., 2022) Det & Map & Depth 1.72 326 486 328 044 108 301 1.1 1.6
UniADx* (Hu et al., 2023) Det&Track&Map&Motion&Oce 048 096 1.65 1.03 0.05 0.17 071 0.31 1.8+
OccNet* (Sima et al., 2023) Det & Map & Occ 1.29 213 299 214 021 059 137 072 2.6
VAD-Base (Jiang et al., 2023) Det & Map & Motion 0.54 1.15 198 122 0.04 039 117 0.53 4.5
PARA-Drive (Weng et al., 2024) Det&Track&Map&Motion&Oce 040  0.77 131 083 0.07 025 060 0.30 5.0
GenAD (Zheng et al., 2024b) Det & Map & Motion 036 0.83 1.55 091 0.06 023 1.00 043 6.7
UAD-Tiny (Guo et al., 2024) Det 047 099 171 106 0.08 039 090 046 1897
UADx* (Guo et al., 2024) Det 039 081 150 09 0.01 012 043 019 727
SSR (Ours) None 024 065 136 075 000 010 036 015 19.6
ST-P31 (Hu et al., 2022) Det & Map & Depth 133 211 290 211 023 062 127 0.71 1.6
UniAD=I (Hu et al., 2023) Det&Track&Map&Motion&0ce 044 0.67 096 069 004 008 023 0.12 1.8+
VAD-Tinyi (Jiang et al., 2023) Det & Map & Motion 046 0.76 1.12 078 021 035 0.58 0.38 16.8
VAD-Baset (Jiang et al., 2023) Det & Map & Motion 041 070 1.05 072 007 0.17 041 022 45
BEV-Plannertf (Li et al., 2024c¢) None 028 042 068 046 004 037 107 049 -
PARA-Drivei (Weng et al., 2024)  Det&Track&Map&Motion&oce ~ 0.25 046 0.74 048 0.14 023 039 0.25 5.0
LAW (Li et al., 2024b) None 0.26 057 1.01 061 014 021 054 030 195
GenAD1 (Zheng et al., 2024b) Det & Map & Motion 0.28 049 0.78 052 0.08 0.14 034 0.19 6.7
SparseDrivet (Sun et al., 2024) Det & Track & Map & Motion 029 058 09 061 0.01 005 0.18 0.08 9.0
UAD=*1 (Guo et al., 2024) Det 028 041 065 045 0.01 003 014 006 7.2%
SSRi (Ours) None 0.18 036 063 039 0.01 004 012 0.06 196

The ego status was
not utilized in the
planning module.

¢:Lidar-based methods.

x:Backbone with ResNet-
101,while others use
ResNet-50 or similar.

1:FPS measure d on an
NVIDIA A100 GPU, while
others were tested on an
NVIDIA RTX3090.

T:AVG metric protocol as
same as VAD.



4.Experiments — Comparison of SOTA on the CARLA dataset (Closed-Loop)

Table 2: Performance on Town(S Long benchmark.

Method | Modality | DST | RCT  IS?
CILRS (Codevilla et al.[2019) C 78 | 103 0.75
LBC (Chen et al.][2020) C 123 | 31.9 0.66
Transfuser (Prakash et al..[202 l} C+L 31.0 | 475 0.77
Roach (Zhang et al.]202T C 41.6 | 964 0.43
ST-P3 (Hu et al.[ 2022} C 115 | 832 -

TCP qu—JTzU’mJ C 57.2 | 804 0.73
VAD-Base (Jiang etal.| 2023 C 303 | 752 -

ThinkTwice (Jia et al.[[2023b C+L 65.0 | 955 0.69
DriveAdupteqﬂm.ﬂzUm} C+L | 659 | 944 0.72
SSR (Ours) | C | 789|955 0.83

The training data has no overlap with Town05 Long benchmark.

CARLA has been built for flexibility and realism in the rendering and
physics simulation. It is implemented as an open-source layer over
Unreal Engine 4 (UE4), enabling future extensions by the community.
Town 1 with a total of 29 km of drivable roads, used for training, and
Town 2 with 14 km of drivable roads, used for testing.

Dosovitskiy, Alexey, et al. "CARLA: An open urban driving simulator." Conference on robot learning. PMLR, 2017.



4.Experiments — Comparison of SOTA on the nuScenes dataset (Closed-Loop)

Table 3: Component-wise Ablation.

Modules L2 (m) | CR (%) |
STL FFP 1s 25 3s Avg. s 2s 35 Avg.

023 065 141 076 004 058 066 0.43
" 0.23 064 139 075 002 010 047 020
W v 0.24 065 136 075 0.0 010 036 0.15

Table 4: Number of Scene Queries.

2 G
Number L2 (m) | CR (%) |}

~

ls 2s 35 Avg. ls 2s 35 Avg.

8 022 059 125 0469 004 014 043 020
16 024 065 136 075 000 010 036 015
32 026 067 138 077 004 012 031 016
64 030 074 147 084 018 039 066 041

STL’s ability to effectively distill critical
information from the dense scene data, thereby
minimizing the impact of irrelevant features and
reducing computational redundancy.

Future Feature Predictor’s role in enhancing
SSR’s comprehension of scene dynamics,
contributing to more safe trajectory planning
and overall performance gains.

Select 16 queries as the default setting in SSR
to balance minimizing L2 error and reducing the
collision rate.

Tab. 5 shows that navigation guidance
improves planning results across all cases.

Table 5: Ablation of navigation guidance. GS means go straight and LR denotes turn left / right.

L L2-GS (m) | L2-LR (m) | CR-GS (%) | CR-LR (%) |
Navigation
Guidance Is 2s 3s  Ave. Is 2s Is 2s 3s  Avg. Is 2s 3s  Avg.
X 0.24 061 1.31 0.72 034 096 0.09 038 040 029 000 044 190 0.78
v 023 0.61 128 071 033 091 1.04 0.00 0.08 0.18 0.10 0.00 029 170 0.66




4.Experiments — Number of scene queries

Visualize 8 out of the 16 BEV square attention maps @ (BI*"*) from the STL module. The results reveal that
each query focuses uniformly on a distinct region of the BEV space, with different queries attending to
different areas. the sum-attention map surprisingly covers the entire scene in a balanced manner

Scene Query 0 Scene Query 1 Scene Query 4 Scene Query 5 FR#10 Sum-Attn

Scene Query 8 Scene Query 10 Scene Query 12 Scene Query 14 FR#65 Sum-Attn



4.Experiments — Visualization of Scene Queries

Fig. 7(a), the activation positions primarily focus on the overtaked vehicle and the left rear area, anticipating
potential risks. Fig. 7(b), the scene queries are more dispersed, with attention directed towards a front-right
vehicle, potentially anticipating a cut-in. Fig. 7(c)), the scene queries not only activate around the right rear

vehicle but also pay attention to the left crosswalk, where pedestrians might appear
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(a) Turn Left  (b) Go Straight  (c) Turn Right

Figure 7: Visualization of Scenes Queries in
Different Scenarios. The central green box rep-
resents ego vehicle. The red boxes indicate the
ground truth object, while the dotted lines de-
note ground truth map. The red star marker is
the most activated position of each scene query.

SIEEN Ear

(a) Turn Left  (b) Go Straight

(c) Turn Right

Figure 8: Visualization of Scene Queries
for Different Navigation Commands in Same
Scene. Different navigation commands are in-
put to the SSR within the same scene to investi-
gate their impact on scene queries. The original
command is go straight.



4.Experiments — Visualization

A qualitative result of SSR on planning trajectories, demonstrating
strong alignment with the ground truth compared to VAD-Base.

—VAD Tra
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— T THH

Figure 9: Visualization of Planning Results. The perception results are rendered from annotations.



4.Experiments — Latency Analysis

NVIDIA GeForce RTX 3090 GPU with a batch size of 1. The
Image backbone and encoder, responsible for generating

21.9% | Image Backbone I
@ _Encoder
Scene TokenlLearner

Planning Decoder

68.8%

90.7% dense BEV features, contribute to 90.7% of the total latency.
In contrast, our proposed Scenes TokenLearner incurs only
7.8% of the latency, highlighting its efficiency in extracting
useful information from massive dense BEV feature. The
planning decoder, which interacts way point queries with

the scene queries and output final planning trajectory, adds
just 1.5% to the latency, as SSR only utilizes 16 tokens to
represent the scenes.

Figure 13: Latency Analysis.

I A O Ego-vehicle Query /\ ) %
® BEVFeature | kForme S \ Agentievel BB =
I KV S Feature ﬁﬁ
B I Track Q I ] i \:M

I KX Motion

II @) &7 Formes -l l OccFormer l > I Planner
| Map @ ‘ o s £ 3

Multi-view Bird’s eye view I
l\"|smn~0nl) Input Feature P

I 0cc @ eature

I - I Motion Q@
I L Backbone ! L Perception I L Prediction L Planning
______ 4

UniAD (77%)

1D | Det.  Track Map Motion Occ.  Plan | #Params  FLOPs FPS
0[105] | v v v | 102.5M 19216
1T T T65.0M THTG: 4.2
Al ¥ STIMT TI/GT 2.7
3 v v v 958M  1520G 2.2
4 v v v v 108.6M  1535G 2.1
5 v v v v v 1225M  1701G 2.0
6 v v v v v v | 1250M  1709G 1.8

Table 13. Computational complexity and runtime with different
modules incorporated. [D,iis similar to original BEVFormer [55], |

and ID. 0 (BEVerse-Tiny) [T05] T Th MITLTramework: — — — =



5.Conclusion & Limitation

(+) Utilizes learned sparse query representations(16 tokens) guided by navigation commands,
significantly reducing computational costs by adaptively focusing on essential parts of scenes.

(+) Introduces a future feature predictor for self-supervision on dynamic scene changes, eliminating
the need for costly perception tasks supervision.

(+) Achieves state-of-the-art performance on both open-loop and closed-loop experiments,
establishing a new benchmark for real-time E2EAD.

(+) SSR eliminates all perception tasks, achieving remarkable performance
in both accuracy and efficiency.

The five reviewers agree that the paper has sufficient novelty.

(-) Fixed number of queries may limit the models ability to handle many other agents/objects.
(-) Can the reliance on adaptive perception be explained?

(-) The proposed architecture borrows the idea of a world model by predicting future BEV features.
(-) Could we use a more cost-effective operator? (e.g., Shift Operation)

(-) How about understanding and incorporating physics (gravity, velocity, and environment)?

https://openreview.net/forum?id=Vv76fCY{fN



https://openreview.net/forum?id=Vv76fCYffN

Thanks

Any Questions?

You can send mail to
Susang Kim(healessl@gmail.com)
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