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1.Introduction - Perception in Autonomous Driving

[Prediction —>|  Planning

Waypoints Trajectory @
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How will they go Where should | go?
in the future?

Challenge | Various weathers,

Hiiiliations SndEEanaibs They perform well under normal environmental conditions but may fail in

adverse weather, such as heavy fog, snow, or obstructions caused by soiling.

End-to-End Autonomy: A New Era of Self-Driving CVPR 2024 Tutorial https://wayve.ai/cvpr-e2ead-tutorial/



https://wayve.ai/cvpr-e2ead-tutorial/

1.Introduction - Various Types of Vision Sensors

(¢) Radar

(a) Camera

(d) Event camera (e) IMU (f) Thermal camera (c) Radar point cloud (d) Event-based (e) Thermal camera

camera image image
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gated camera

Complete image, accumulating -

Brightway Vision
multiple exposures in a single frame.

Uniformly clear across all ranges

1,000s of
exposures per
frame o

——— Reference
-
A camera that opens its shutter : -
only during a specific time chmjrbiy
window (gate) to capture reflected Boste
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Gated camera : https://www.brightwayvision.com/technology
Liu, Mingyu, et al. "A survey on autonomous driving datasets: Statistics, annotation quality, and a future outlook." Transactions on Intelligent Vehicles 2024.
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1.Introduction — 3D Object Detection

Sensors & Data Representations
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Mao, Jiageng, et al. "3D object detection for autonomous driving: A comprehensive survey." IJCV 2023.



1.Introduction — Multi-modal 3D Object Detection

LiDAR-based 3D Object Detection (Section 3)

Camera-based 3D Object Detection (Section 4)

Based on data representations

Monocular 3D object detection

+ Pomt-based detection

*  Grid-based detection

+ Point-voxel based detection
* Range-based detection

* Image-only monocular detection
* Depth-assisted monocular detection
* Prior-guided monocular detection

Multimodal

Multi-modal 3D Object Detection (Section 5)

Multi-modal detection with LIDAR-camera fusion

* Early fusion-based detection

+ Late fusion-based detection

Based on learning objectives

Stereo-based 3D object detection

Multi-modal detection with radar signals

I

Multi-view 3D object detection

1
1
1
l. Intermediate fusion-based detection
I
I
I

Multi-modal detection with high-definition maps

]

I——————-T.——————

Transformer-based 3D Object Detection (Section 6)

Transformer architectures for 3D object detection

|
|
|
|| Transformer applications in 3D object detection
|
|
|

3D Object Detection for Autonomous Driving

l

—

|

Temporal 3D Object Detection (Section 7)

Label-efficient 3D Object Detection (Section 8)

3D Object Detection in Driving Systems (Section 9)

Detection from LiDAR sequences

Domain adaptation for 3D object detection

End-to-end learning for autonomous driving

Detection from streaming data

Weakly-supervised 3D object detection

Simulation for 3D object detection

Detection from videos

Semu-supervised 3D object detection

Robustness for 3D object detection

Self-supervised 3D object detection

Collaborative 3D object detection

Mao, Jiageng, et al. "3D object detection for autonomous driving: A comprehensive survey." IJCV 2023.




1.Introduction - Multimodal sensor fusion
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Figure 1. Perception Tasks of Autonomous Driving by Multi-modal Sensor Fusion Model.
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Huang, Keli, et al. "Multi-modal sensor fusion for auto driving perception: A survey." arXiv 2022.



2.Related Works — Transfusion (Lidar+Camera) (CVPR 2022)

TransFusion is a robust solution for LIDAR-camera fusion, employing a soft-association mechanism to handle challenging image
conditions. Specifically, TransFusion consists of convolutional backbones and a detection head based on a transformer decoder.
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Bai, Xuyang, et al. "Transfusion: Robust lidar-camera fusion for 3d object detection with transformers.” CVPR 2022.



2.Related Works — SparseFusion (Lidar+Camera) (CVPR 2023)

SparseFusion utilizes the outputs of parallel detectors in the

T2 vEusion Liang) Mg e : LIDAR and camera modalities as sparse candidates for fusion.
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and fuse them in a unified 3D space to perform detection. Sparse fuses sparse candidates from LIDAR and camera

modalities to obtain a multi-modality instance-level representation
in the unified LIDAR space

Xie, Yichen, et al. "Sparsefusion: Fusing multi-modal sparse representations for multi-sensor 3d object detection." CVPR 2023.



2.Related Works - RCBEVDet (Radar+Camera) (CVPR 2024)

Radar Point Features Radar Point Features

RCBEVDet is a radar-camera fusion method for 3D object detection in BEV.
It introduces RadarBEVNet, which uses a dual-stream radar backbone and
an RCS-aware BEV encoder for radar feature extraction.
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Lin, Zhiwei, et al. "RCBEVDet: radar-camera fusion in bird's eye view for 3D object detection.”" CVPR 2024.

right figure displays the structure of the extraction operation.



Test Vehicle

2.Related Works - Gated2Depth(Gated Camera) (CVPR 2019)

RGB Camera Gated Camera Lidar Bird’s Eye View  standard RGB

stereo camera
(Aptina AR0230),
lidar system
(Velodyne HDL64-
S3)and a

gated camera
(BrightwayVision
BrightEye)

Figure 2: Sensor performance in a fog chamber with very I Sicet Slica 2 Siica 3
dense fog. The first row shows recordings without fog while
the second row shows the same scene in dense fog.

RGB Full ’Gated ot Lidar

laser illumination

‘ ’ =
Gated Imager "—Tﬁ T— |
Lidar in Snow Gated2Depth Figure 3: A gated system consists of a pulsed laser source
iR " " I and a gated imager that are time synchronized. By setting
: ' the delay between illumination and image acquisition, the

environment can be sliced into single images that contain
only a certain distance range.

Gruber, Tobias, et al. "Gated2depth: Real-time dense lidar from gated images.” CVPR 2019.



3.Method - Challenging Adverse Weather Conditions

RGB Camera

Gated Camera

gated NIR, RGB color-
imaging, LIDAR, and
radar.

Ground truth bounding
boxes in red
Predictions in green.




3.Method - The contributions of SAMFusion

- We propose a novel transformer-based multi-modal sensor fusion approach, improving object
detection in the presence of severe sensor degradation.

- We introduce an encoder architecture combining early camera fusion, depthbased cross-modal
transformation, and adaptive blending in conjunction with learned distance-weighted
multimodal decoder proposals to increase the reliability of object detection across lighting and
weather conditions.

-  We design atransformer decoder that aggregates multimodal information in BEV through
multimodal proposal initialization.

- We validate the method on automotive adverse weather scenes and improve 3D-AP, especially

for the pedestrian class by more than 17.2 AP in dense fog and 15.62 AP in heavy snow on
the most challenging distance category from 50 m-80 m relative to the state of the art

’;I ‘ ‘ ‘ SAMFusion




3.Method - SAMFusion architecture for multimodal 3D object detection.
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3.Method - Backbones

Input Modalities

RGB

LiDAR Gated

Radar

@; r € BEV coordinates

~

(

oo/ AR Y

Legend

Backbones

Cameras Features

BEV Points Features

Multi-Head
Attention Block

Inter-Modal
Attention Block

Concatenation

Addition

.f

cross-modal attention

. S eHER Sl Mole!
‘f?CG == E SOff-ITIa-ZI? T YL.ca-
wr,ca€Js d

Intra modal-attention

‘A AL
. LACHER JoHte
Yo.g = E so ftmax T Yo;G-
wc.g€Js | d

RGB/gated camera, LIDAR, radar are transformed into features through their respective feature extractors.
By integrating these sensors into a depth-based feature transformation, a multi-modal query proposal
and a decoder head, SAMFusion ensures robust and reliable 3D object detection across diverse scenarios.



3.Method — Camera-Adaptive Blending

f Camera-Adaptive Blending \ Y¢ 1 . The projection for RGB
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Queries from RGB and gated cameras are compared against weighted LIDAR context samples
(RGB camera against Sampled LIDAR and gated camera against Sampled LIDAR).



3.Method — Camera-Adaptive Blending process
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3.Method - LiDAR-Adaptive Blending & Radar-Adaptive Blending

fi LiDAR-Adaptive Blending ki
v* e YL, a® 0as Y X *
Dhee YL
>

J

In this module, we blend LIDAR features ¢; with a
weighted context from RGB and gated camera
features ¢ ; using attention, with LiDAR features
serving as queries and camera(+gated) features
as keys and values.

s Radar-Adaptive Blending E
& ——— A -
canne VRO

YC.R

i

3D LIDAR features ¢; (x;,y;,z;) are mapped onto
the corresponding 2D image points (uc.c 1, Vc.6..) bY
projection, through the ¢, .., LIDAR-to-camera (RGB,;
gated) projection matrix.

Blend the LiDAR-aware sampled image features
from the two camera modalities

Yoa,L = Po,L D Ya.L

3D Radar features @i (xg, Vg, zg) are mapped onto
the corresponding 2D image points (ug ¢, Vg ¢) by
projection, through the ; . Radar-to-camera (RGB,;
gated) projection matrix.

Radar features serving as queries and camera
features as keys and values.



3.Method - Late Gated Camera Features Fusion.

g ‘
ﬁ Camera features are assigned to the corresponding LiDAR pillars
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Radar is more reliable at longer distances. 3 \
LiDAR Rada
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3.Method — MMPI module (Deepinteraction - NeurlPS 2022)

Q viar
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Jf\..
and the bounding box predictions {bg_lj}

n=1 n=1

from previous layer as inputs and enabling interaction with the intensified image h;, or LiDAR h;,
representations (h;, if [ is odd, h/, if [ is even). We formulate the multi-modal predictive interaction
layer (Figure 3(b)) for specific modality as follows:

Yang, Zeyu, et al. "Deepinteraction: 3d object detection via modality interaction.” NeurlPS 2022.




4.Experiments — Implementation Details

Framework : Pytorch, MMDetection3D
Camera branch backbone : Initialized ResNet-50
Pretrained weight : Cascade Mask R-CNN

Input image size : RGB, Gated Image [800,400] (cener-based cropping — reduce computational cost)

Voxel size : 0.075m deep, 0.075m wide and 0.2m high.

LiDAR point clouds : (O m, 100 m) in range, (-40 m, 40 m) in width and the height range (-3 m, 1m)
Radar point clouds : (0 m, 100 m) in range, (-40 m, 40 m) in width and the height range (-0.2 m, 0.4 m)
Decoder layers : four stacked transformer, guided by RGB, gated camera, and LIDAR modalities with

200 initial multi-modal proposals.

We train all models for 12 epochs in an end-to-end manner with a batch size of 4 on NVIDIA V100 GPUSs.

MurLrt MobpaAL FEATURE Mar WEIGHTING

FEATURE MAP BLENDING MODULE

Layer # |

Layer Description

Output Shape

Layer # Component Sigmoid mask Output Shape
0q Convfuser (¢}, I'vrp) v 128 x 180 x 180
0y, Convfuser (¢g, I'nnp) v 128 x 180 x 180
1 Convfuser (0q,0p) X 128 x 180 x 180
Combined feature map ¢r, . Shape: 128 x 180 x 180

Convfuser

Conv2d (3x3)

GroupNorm (num _groups=16)

ReLU

Conv2d (3x3)

GroupNorm (num _groups=16)

ReLU

Conv2d (3x3)

GroupNorm (num _groups=16)

ReLU

128 = 180 x 180




4.Experiments — Dataset and Evaluation Metrics

The SeeingThroughFog Dataset ImagecnT s |
2,997 annotated samples in adverse weather conditions,
covering night, fog, and snowy scenarios.

Lidar-only Detection

Following prior research(Gated3D),

we divide the dataset into 10,046 samples for training,
1,000 for validation, and 1,941 for testing.

The test split is further divided into 1,046 daytime Proposed Fusion Architecture
and 895 nighttime samples, with respective weather splits.

Evaluation Metrics.
Object detection performance is evaluated according to the metrics specified in the KITTI evaluation
framework, including 3D-AP and BEV-AP for the passenger car and pedestrian class.

We incorporate 40 recall positions for the AP calculation. To match the predictions and ground truth
we apply intersection over union (loU) with an IoU of 0.2 for passenger cars and 0.1 for pedestrians.
Further, we follow and report results according to respective distance bins.



4.Experiments — Seeing Through Fog (CVPR 2020)

Vehicle Setup Geographical coverage of the data collection campaign covering two
Gated Camera Stereo Camera Velodyne HDL64-S3 Weather Station months and 10!000km in Germany1 SWGden! Denmark’ and Flnland'
BrightwayVision Aptina AR0230 903nm, 64-layer Airmar WX 150 DATASET KITTI[1U] | BDD [00] | Waymo [0] | NuScenes [0] Ours
808nm, 1280x720 1920x1080 SENSOR SETUP
) RGB CAMERAS 2 1 5 6 2
FIR camera RGB RESOLUTION 1242%372 | 1280%720 | 19201080 1600x900 | 1920x1024
AxisQI922 LIDAR SENSORS 1 x 5 1 2
640x480, 100mK LIDAR RESOLUTION 64 0 64 32 64
< PRADARSENSOR. o o e & e e o & e e e o o o e e e = L =
IGATED CAMERA X X X X 1 |
FIR CAMERA X X X X 1
Road-Friction Sensor RAMEREE. — — |~ Tom— [ Tom~— |~ ToH.~ T TH 10~ Tom— -
Vaisala l’rotolypc DATASET STATISTICS
LABELED FRAMES 15K 100k 198k 40K 13.5K
LABELS 80k 1.47M 7.87TM 1.4M 100K
SCENE TAGS X v X v v
NIGHT TIME X v v v v
Velodvne VLP32 LIGHTWEATHER, _ | o X o ol e o e m & o Ve e e e o
9;;"13'““7 v HEAVY WEATHER X X X X v I
3nm, 32-layer FOG CHAMBER X X X X v 3

I Mio

500k

Quantity [#Frames]

Table 1: Comparison of the proposed multimodal adverse
weather dataset to existing automotive detection datasets.
1,000,000 Gated Camera RGB Camera BEV Lidar Intensity Radar

Propreatary radar

Weather Distribution

375,000
21,800 22,200 l !
G\C:a‘ &Qa‘é \\\Qa‘?ﬂ @\i\ 59631
o ¥

Bijelic, Mario, et al. "Seeing through fog without seeing fog: Deep multimodal sensor tusion in unseen adverse weather.” CVPR 2020.



4.Experiments — nuScenes (CVPR 2020)

Sensor Details

6x Camera RGB, 12Hz capture frequency, 1/1.8” CMOS sensor,
1600 x 900 resolution, auto exposure, JPEG com-
pressed

Ix Lidar Spinning, 32 beams, 20Hz capture frequency, 360°
horizontal FOV, —30° to 10° vertical FOV, < 70m
range, +=2cm accuracy, up to 1.4 M points per second.

5x Radar < 250m range, 77GHz, FMCW, 13Hz capture fre-
quency, =0.1km/h vel. accuracy

GPS & IMU GPS, IMU, AHRS. 0.2° heading, 0.1° roll/pitch,

20mm RTK positioning, 1000Hz update rate

Table 2. Sensor data in nuScenes.

S

-

Q\ 5)

singapore-onenorth

boston-seaport

Figure 5.

— X-axis
Downward -~ Y-axis
® upward —» Z-axis

Figure 4. Sensor setup for our data collection platform.

Spatial data coverage for two nuScenes locations.

Colors indicate the number of keyframes with ego vehicle poses

within a 100m radius across all scenes.

Caesar, Holger, et al. "nuscenes: A multimodal dataset for autonomous driving." CVPR. 2020.

Radar | Lidar

"Ped with pet, bicycle, car makes a u-turn, lane change, peds crossing crosswalk"




4.Experiments — Comparison of benchmark datasets

Cateqory

KITTI

nuScenes

Seeing Through Fog (STF)

(@) Object Classes

Car, Van, Pedestrian, Cyclist,
etc.

Car, Truck, Bus, Pedestrian, Bicycle,
Motorcycle, etc.

Focus on Car, Pedestrian

X Evaluation Unit

Per-frame 3D bounding box

Includes object tracking unit
(detection + tracking)

3D bounding box (per-frame), includes
annotations under different weather
conditions

Q GT Labeling Criteria

\Valid only if LIDAR point
count > 5, others treated as
"don't care"

All objects labeled, includes
metadata such as visibility, score

Pedestrian labeled even with 1-2 points
(focus on completeness)

& "Don't Care" Region

Clearly defined. No GT
box=ignore surroundings

None. All included in evaluation

Vehicles with insufficient points
[treated as “don’t care”

B Evaluation Metrics

AP@IloU 0.7 (Car), 0.5
(Pedestrian)

mAP, mATE, mASE, mAAE, mAVE,
NDS and other diverse metrics

range (0-30m, 30-50m, 50-80m)

& Weather/Lighting Tags

None (all clear weather)

Some night/rain included, but
mostly clear conditions

Includes weather condition tags (Clear,
Light Fog, Dense Fog, Snow)

& Occluded Object
Handling

Not labeled

Includes occlusion level, visibility
score

Pedestrians labeled even with poor
visibility

B8 Number of Cameras

2 (Stereo)

6-camera surround view

2 (Stereo) + Gated camera + FIR
camera

£2 LiDAR Resolution

Velodyne HDL-64E
(64 channels)

Velodyne HDL-32E (32 channels)

Mix of HDL-64E + VLP-32C

&8 Sensor Configuration

RGB + LiDAR

RGB (6) + LiDAR + RADAR

RGB + LiDAR + Radar + Gated NIR +

|
|
|
|
|
I
|
|
|
|
|
|
AP@IoU 0.5, evaluated by distance |
|
|
|
|
|
|
|
|
|
I
|
|



4.Experiments — Evaluation of SAMFusion detection performance

Average Precision for Pedestrian class

Day Night
Method Modality | 3D object detection BEV detection 3D object detection BEV detection
0-30m 30-50m 50-80m 0-30m 30-50m 50-80m | 0-30m 30-50m 50-80m 0-30m 30-50m 50-80m
M3D-RPN E| C 26.20  14.50 9.84 30.68 17.47 10.07 | 25.09 6.43 2.07 26.42 7.69 2.74
ParcuNET G 32.88 18.05 5.62 30.45  20.27 9.77 15.37 13.37 6.75 21.60 18.15 8.46
GATED3D G 50.94  20.59 14.14  53.26  22.15 16.51 | 48.53 23,99 14.98 49.82 25,57 15.46
STEREO-R 36] S 48.58 23.26 7.77 50.11  25.10 8.38 46.09 21.63 11.57 4758 2547 11.84
SECOND ml L 70.75  51.81 19.34  71.05 52.51 20.28 | 69.04 48.09 1456 70.51 49.23 15.32
MVXNET @ CL 7451 61.69  29.78 7488 62.63 30.54 | 74.15 55.66 23.19 74.42 5590  23.58
BEVFUSION CL 64.25 57.91 8.86 64.76  59.41 8.86 65.78 52.91 7.25 66.25  54.40 T.2T
DEEPINTERACTION CL 78.01 66.59 28.55 77.98 66.67 2854 | T1.98 61.10 20.53 T71.96 61.29 20.72
SPARSEFUSION [T7] CL 68.27  60.18 16.89  68.18  60.32 16.92 | 61.11  57.09 12.67 61.21 57.24 12.66
SAMFuUsION CGLR | 80.09 70.97 40.16 79.97 70.99 40.35 |75.49 67.59 27.14 75.49 67.56 27.16
Average Precision for Car class
Day Night
Method Modality | 3D object detection BEV detection 3D object detection BEV detection
0-30m 30-50m 50-80m 0-30m 30-50m 50-80m | 0-30m 30-50m 50-80m 0-30m 30-50m 50-80m
M3D-RPN E| C 53.21  13.26 10.52 60.80 16.16 10.52 | 51.18  20.76 2.73 52,53  21.39 2.74
ParcuNEeT [48] b 23.91  10.86 7.34 2487 11.33 7.84 23.74  16.79 7.16 25.15 17.76 8.20
Catep3D [31] M 52.15 28.31 1485 5231 20.26 15.02 | 51.42 25.73 12,97 53.37 20.13 13.12
STEREO-RC 36] S 5417  17.16 6.17 57.92 17.69 6.26 4736 17.21 13.02 53.81 18.34 13.08
SECOND m L 95.68  81.90 46.81  95.70  82.18 47.55 | 98.01 8410 4853 98.03 84.23 50.39
MVXNET E CL 96.29  84.09 50.35  96.30 84.09 51.83 | 96.36  85.99 49.79 96.36 86.06 51.17
BEVFUSION CL 95.30  86.86 11.43 9543 R7.38 11.24 | 93.89 84.84 1217 93,95 85.31 12.48
DEEPINTERACTION CL 97.12 87.95 51.84 97.13 8847 51.99 | 98.31 88.09 46.83 9831 88.11 46.87
SPARSEFUSION CL 97.47 88.10 31.02 97.49 88.26 31.11 | 96.12  86.49 27.99  96.13  86.51 28.01
SAMFusion CGLR | 97.25 89.50 50.68 97.26 89.69 50.80 |98.7T7 88.91 4440 98.82 89.16 45.46

Only clear objects are labeled, so detection performance may be underestimated.

SoTA mono- and multi-
modal methods based on
the car and pedestrian
classes on the
SeeingThoughFog test
set.

Objects with fewer than
five LIDAR points are
excluded from evaluation,
SO correct detections in
challenging conditions
(e.g., fog, long distance)
may be underestimated.

In contrast, the pedestrian
class prioritizes
completeness by labeling
as many objects as
possible, even with few
LiDAR points.



4.Experiments — Ablation study

(a) Ablation of Input Modality configurations. (b) Ablation of SAMFusion components.

Input Proposal Day Night Input Depth-based Proposal Day Night
Modality | Modality | 3D object detection | 3D object detection Modality | Transformation | Modality Iuvrp
30-50m 50-80m 30-50m 50-80m C G R L 50-80m  50-80m
CL L 66.59 28.55 61.10 20.80 CGLR X X X X v X 28.94 22.34
z GL L 65.59 26.89 63.25 22.11 5 CGLR X X X v v X 29.48 23.02
E CGL L 66.88 28.94 64.17 22.34 E CGLR v X X v v X 29.49 24.01
5 CLR LR 69.06 35.02 65.97 20.95 E CGLR v X X v v v 35.60 26.85
o GLR LR 69.52 32,17 67.05 24.40 ! CGLR v v X v v 36.19 22.79
< CGLR LR 69.98 35.60 67.22 26.85 CGLR v X v v 7/ v 40.16 27.14
CGLR GLR 70.99 40,16 67.56 27.14

Table validates the proposed method in adverse weather, like snow and fog.(reduced number of road users in
these weather

Average Precision for Pedestrian class Average Precision for Car class

Snow Fog Snow Fog
Method Modality | 3D Object Detection | 3D Object Detection | 3D Object Detection | 3D Object Detection
0-30m 30-50m 50-80m | 0-30m 30-50m 50-80m | 0-30m  30-50m 5H0-80m | 0-30m 30-50m 50-80m
MVXNET [62] CL 76.23 59.73 25.83 73.89  50.98 16.73 | 95.82  86.02 50.28 | 92.81 84.62 52.30
BEVFusioN [42] CL 71.12 62.61 10.01 76.24  5H8.04 5.61 92.55 89.74 10.79 | 92.20 84.04 13.97
DEEPINTERACTION |[83] CL 72.91 H7.56 18.38 66.62 50.32 10.64 | 95.36  82.05 56.21 95.44 83.55 49.30
SparseEFuUsION [77] CL 73.33  66.84 19.87 | 79.25 58.39 17.05 | 96.79 91.35 32.11 | 95.81 87.71  25.16
SAMFusionN CGLR | 87.44 80.51 41.45 |83.18 66.96 34.31 |97.36 93.06 56.22 | 96.50 92.41 52.99

Improvement in AP +11.2 413.6 +15.62| +3.9 485 417.2|+0.5 +41.7 40.01 | +0.7 +4.6 0.7



4.Experiments — Qualitative results (adverse weather)

Ground Truth SAM Fusion Deep Interaction MVX—-Net BEV Fusion




4.Experiments — Qualitative results (different sequences)

Ground Truth SAM Fusion Deep Interaction MVX-Net BEV Fusion




4.Experiments — Additional Results

The model enhances performance in adverse weather while maintaining accuracy in normal conditions.

Method Modality mAP T NDS 1
FUTR3D [7] CL 64.5 68.3 Model Inference time [ms| ||Frames per Second 1
AMVP [24] CL 67.1  70.8 MVXNET [2]] 74.0 135
AUTOALIGNV2 [ ] CL 67.1 71.2 BEVFUSION[ ] 57.4 17.5
TraNsFusioN [1] CL 67.5 713 DEEPINTERACTION [23] 48.3 20.7
BEVFusion [16] CL 67.9 71.0 SAMFUSION 70.7 14.3
BEVFusion [18] CL 68.5 71.4
DEEPINTERACTION [23] CL 69.9 9.7 Table 4: Inference time comparison to existing multi-modal detection methods.
SAMFUSsION CLR 68.6 71.7
Table 2: Results on nuScenes dataset validation split.
Method |Modality| mAP 1 NDS ¢
DEEPINTERACTION [23] CL 06.6 64.6
SAMFUSION CLR 58.8 65.6

Table 3: Results on nuScenes dataset validation split for detections on the 20-50
meters range.



5.Conclusion & Limitation

(+) The first research on four-sensor fusion integrating camera, gated camera, radar, and LiDAR.

(+) Sensor Reliability Estimation Module : Learns an adaptive weighting for each sensor modality
based on quality indicators. (Sensor-Specific Encoders)

(+) Uses a late-fusion approach with a shared feature space in Bird’s-Eye View (BEV), allowing flexible
integration of feature maps from multiple sensors.

(+) Introduces a robust sensor-level architecture for fog, snow, and heavy rain, significantly enhancing
detection of narrow-profile and vulnerable road users in low-light and adverse weather conditions.

(-) As the number of sensor types increases, computational overhead also increases.

(-) Solving the problem with a single sensor is more practical than using multimodal sensors.

(-) The performance naturally improves as the number of input modalities increases.

X How about applying event cameras from a multimodal perspective?




Thanks

Any Questions?

You can send mail to
Susang Kim(healessl@gmail.com)
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