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Introduction



Introduction

Surveillance cameras are widely being used in POSCO.
Real-time video understanding is an important step towards.
(strong spatio-temporal modeling & capacity at low latency)
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Preliminaries - Representations for Video Classification

Hand-designed features : Wang et al., Action Recognition by Dense Trajectories, CVPR 2011.

Spatiotemporal ConvNets : Karpathy et al., Large-scale Video Classification with Convolutional Neural
Networks, CVPR 2014

Two-stream ConvNets : K. Simonyan & A. Zisserman, Two-Stream Convolutional Networks for Action
Recognition in Videos, NIPS 2014

3D ConvNets (C3D) : Du Tran et al., Learning spatiotemporal features with 3d convolutional networks. ICCV
2015

Temporal modeling without 3D ConvNets : X. Liu et al., TSM: Temporal Shift Module for Efficient Video
Understanding, ICCV, 2019

Vision Transformer backbones : A. Arnab et al., ViViT: A Video Vision Transformer. ICCV 2021

Hybrid backbones(CNN+Self AttentionUniFormer: Unified Transformer for Efficient Spatiotemporal
Representation Learning. ICLR 2022) : K. Li et al.,



Attentional Mechanism(Neural machine translation)
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Neural machine translation a
stacking recurrent architecture for
translating a source sequence.

Attention Weights(Hard/Soft)

Aftention Layer
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Luong, Thang et al. “Effective Approaches to Attention-based Neural Machine Translation.” EMNLP 2015.



Self-Attention

One is the total computational complexity per layer. f(x)
Another is the amount of computation that can be
parallelized, as measured by the minimum number

convolution Ix
feature maps (x)

of sequential operations required. The third is the
path length between long-range dependencies in
the network.

Hin |

transpose
p attention

map

softmax | I

Learning long-range dependencies is a key
challenge in many sequence transduction tasks. As
side benefit, self-attention could yield more
interpretable models. We inspect attention
distributions from our models.
Table 1:

h(x) |
Ixleony :

Attention(Q,K,V) : Self-Attention Generative Adversarial Networks

Maximum path lengths, per-layer complexity and minimum number of sequential operations

for different layer types. n is the sequence length, d is the representation dimension, £ is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Maximum Path Length

Layer Type Complexity per Layer  Sequential
Operations‘
Self-Attention O(n? - d) 1)
Recurrent O(n - d?) ( 1)
Convolutional Ok -n - d?) 0O(1)
Self-Attention (restricted) O(r-n-d) 0O(1)

Attention Is All You Need [16]

self-attention
feature maps (o)

\{\)



Attention Is All You Need (NIPS 2017) [16]

Transformer, the first sequence transduction model based entirely on attention, replacing the recurrent layers.
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Figure 1: The Transformer - model architecture.




Vision Transformer (ViT) (ICLR 2021)

“An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale”
CNNs is not necessary and a pure transformer applied directly to sequences of image patches
Vision Transformer has much less image-specific inductive bias than CNNs

Vision Transformer (ViT)

Transformer Encoder

o)) ) ) 8l

* Extra learnable
[class] embedding
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Embedding > Eﬂ

Linear Projection of Flattened Patches

)
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Vision Transformer (ViT) [4]

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by

Vaswani et al. (2017).

Model Layers Hiddensize D MLPsize Heads Params
ViT-Base 12 768 3072 12 86M

ViT-Large 24 1024 4096 16 307TM
ViT-Huge 32 1280 5120 16 632M

Table 1: Details of Vision Transformer model variants.

Transformer Encoder

Embedded
Patches

The sequence of linear embeddings of these patches
as an input to a Transformer. The Transformer

encoder consists of alternating layers of multi headed
self attention (MSA) and MLP blocks. Layernorm (LN)

is applied before every block, and residual
after every block

connections

Zg = [Xclms; X]I,E; X?;E; see sy X;;VE] + Epom Ec¢ R(‘”Q'C')XU. Epos c RIN+LIxD
'y = MSA(LN(z¢-1)) + 21, (=1...L
z¢ = MLP(LN(2'¢)) + 2's, (=1...L
y = LN(z})
[a,k,v] = z2Ugk, Uiki € RD*3Dn
A = softmax (qkT/\/D,,> A e RVXN
SA(z) = Av.

I\'ISA(Z) = [SAL(:): SAZZ(Z): T ;SA};(;)] Unu;a

U”i.‘i’(l E Rk‘Dh * D

The Vision Transformer performs well when pre-trained on a large JFT-
300M dataset. With fewer inductive biases for vision than ResNets.
X JFT-300M Dataset (300M web images / ~ 19K categories)




On Layer Normalization in the Transformer Architecture (ICML 2020)

Table 1. Post-LN Transformer v.s. Pre-LN Transformer
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Figure I. (a) Post-LN Transformer layer; (b) Pre-LN Transformer

layer.
Figure 3. The norm of gradients of 1. different layers in the 6-6 Transformer (a,b). 2. W2E in different size of the Transformer (¢,d),
Theorem 1 (Gradients of the last layer in the Transformer). oL T t
A / post 5 d pre 2 85)-b ded ||‘—8W/2 17 |IF< O(d In (1) h‘(t) - 71r?nax,t < Twarmup-
ssume that ||7°:"°||3 and ||z7"5, .||3 are (e, §)-bounde warmup

for all i, where € and 0 = 0(€) are small numbers. Then ' Pre-LN Transformer with L layers, _ )
In this paper, we study why the learning rate

with probability at least 0.99 — 0 — g, for the Post-LN Y nd o . -
Transformer with L layers, the gradient of the parameters || |[r< d\/— |- warm-up stage Is important in tramm_g the
ow? L Transformer and show that the location of

of the last layer satisfies o
layer normalization matters.

Learning Deep Transformer Models for Machine Translation https://arxiv.org/pdf/1906.01787.pdf
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DeiT (Data-efficient image Transformers) (ICML 2021)

“Training data-efficient image transformers & distillation through attention”

DeiT are image transformers that do not require very large amount of data to be trained.
we train a vision transformer on a single 8-GPU node in two to three days that is
competitive with convnets having a similar number of parameters and efficiency.
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Figure 1: Throughput and accuracy on Imagenet of our methods compared to
EfficientNets, trained on Imagenetlk only. The throughput is measured as the
number of images processed per second onja V100 GPU. DeiT-B s identical to
VIT-B, but the training is more adapted to a @aTa-5Tafviffy Tegn®. It is learned
in a few days on one machine. The symbol  refers to models trained with our
transformer-specific distillation. See Table 5 for details and more models.
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Table 7: We compare Transformers based models on different transfer learning
task with ImageNet pre-training. We also report results with convolutional
architectures for reference.

Model | ImageNet ‘ CIFAR-10 CIFAR-100 Flowers Cars iNat-18 iNat-19 ‘ im/sec
Grafit ResNet-50 [49] 79.6 - 98.2 925 69.8 759 1226.1
Grafit RegNetY-8GF [49] 990 940 768 80.0 591.6
ResNet-152 [10] - - - - - 69.1 - 526.3
EfficientNet-B7 [48] 84.3 98.9 91.7 98.8 94.7 - - 55.1
ViT-B/32[15] 734 97.8 86.3 85.4 3945
ViT-B/16 [15] 77.9 98.1 87.1 89.5 85.9
ViT-L/32 [15] 712 97.9 87.1 86.4 124.1
ViT-L/16 [15] 76.5 97.9 86.4 89.7 _ ~ - 27.3
DeiT-B 818 99.1 90.8 98.4 92.1 73.2 77.7 2923
DeiT-B1384 83.1 99.1 90.8 98.5 93.3 79.5 81.4 85.9
DeiT-B™ 834 99,1 91.3 98.8 92.9 73.7 78.4 2909
DeiT-B® 1384 84.4 99,2 914 98.9 93.9 80.1 83.0 859




Is Space-Time Attention All You Need for Video Understanding? (ICML 2021)

“TimeSformer” adapts the standard Transformer architecture to video by enabling spatiotemporal feature learning
directly from a sequence of framelevel patches.

o
[ z(ifn | 2(E-1) E
[ =D [ 2(1'” [ Timeat ] [ Cocalar|
| Space Att. | [Join\Spaoe-T‘nmeAn,l é é
[ spaceat. | [ ciovatatt. | E
s
[we ) e | 4 2
[me ] [ me ]
20 o) (& -
+
L =0 | =9 ] ¢
20 £
" Joint Space-Time Divided Space-Time Sparse Local Global Axial Attention
Space Attention (S) Attention (ST) Attention (T+S) Attention (L+G) (T+W+H)

Figure 1. The video self-attention blocks that we investigate in this work. Each attention layer implements self-attention (Vaswani et al.,
2017b) on a specified spatiotemporal neighborhood of frame-level patches (see Figure 2 for a visualization of the neighborhoods). We use
residual connections to aggregate information from different attention layers within each block. A 1-hidden-layer MLP is applied at the

end of each block. The final model is constructed by repeatedly stacking these blocks on top of each other.

Model Pretrain K400 Training K400 Inference Params
Time (hours) Acc.  TFLOPs

I3D 8x8 RS0 ImageNet-1K 444 71.0 L1 28.0M
13D 8x8 RS0 ImageNet-1K 1440 73.4 1.11 28.0M
SlowFast RS0  ImageNet-1K 448 70.0 1.97 34.6M
SlowFast RS0  ImageNet-1K 3840 75.6 1.97 34.6M
SlowFast RS0 N/A 6336 76.4 1.97 34.6M
TimeSformer  ImageNet-1K 416 75.8 0.59 121.4M
TimeSformer ImageNet-21K 416 78.0 0.59 121.4M

Table 2. Comparing TimeSformer to SlowFast and I3D. We ob-
serve that TimeSformer has lower inference cost despite having
a larger number of parameters. Furthermore, the cost of training
TimeSformer on video data is much lower compared to SlowFast
and I3D, even when all models are pretrained on ImageNet-1K.

Kinetics

- TimeSiormer
-8 SlowFast
130

60K 120K 180K

# of Training Videos

240K

D% AENE NN

Space Attention (S)

HFERREE BN -
LHi- HSEK HEE-
DE NN ENEs
EE NS

Joint Space-Time
Attention (ST)

Divided Space-Time
Attention (T+S)

Axial Attention
(T+W+H)

Sparse Local Global
Attention (L+G)

Sequence of frame-level patches with a size of 16 x 16
pixels. query patch and show in non-blue colors its self-
attention space-time neighborhood under each scheme.
Patches without color are not used for the self-attention
computation of the blue patch. Multiple colors within a
scheme denote attentions separately applied along different
dimensions (e.g., space and time for (T+S)) or over different
neighborhoods (e.g., for (L+G)). Note that self-attention is
computed for every single patch in the video clip, every
patch serves as a query. it extends in the same fashion to
all frames of the clip



ViVIiT: A Video Vision Transformer (ICCV 2021)

! We consider two simple methods for mapping a video
Factorised ’ Factoieed V¢ RTXHXWXC 5 3 sequence of tokens Z €

Self-Attention : Dot-Product SESn s e g
Pasiton-+ Token ' Rrexnnxnwxd We then add the positional embedding and
PP . reshape into R™ %4 to obtain z, the input to the transformer.
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Figure 1: We propose a pure-transformer architecture for video classification, inspired by the recent success of such models for images [15]. Figore 2: Uniformdfeame sampling: Weimply samplen; frames;

To effectively process a large number of spatio-temporal tokens, we develop several model variants which factorise different components and embed each 2D frame independently following ViT [15].
of the transformer encoder over the spatial- and temporal-dimensions. As shown on the right, these factorisations correspond to different
attention patterns over space and time.

Pure-transformer based models for video classification, we propose several,
efficient variants of our model which factorise the spatial- and temporal-dimensions
of the input. how we can effectively regularise the model during training and
leverage pretrained image models to be able to train on comparatively small
datasets.

Model 1: Spatio-temporal attention : all spatio-temporal tokens

—

Model 2: Factorised encoder : two separate transformer encoders Figure 3: Tubelet embedding. We extract and linearly embed non-
Model 3: Factorised self-attention : the order of spatial-then-temporal selfattention ~ °verlapping tubelets that span the spatio-temporal input volume.
Model 4: Factorised dot-product attention : Y = Concat(Y,,Y;)Wo

tx hxw,n = [%J np = L%J and n,, = ||

w



Multiscale Vision Transformers(MVIT) (ICCV 2021)
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Figure 1. Multiscale Vision Transformers learn a hierarchy from Ser T Tk T TS mwxE T T T AWk D
dense (in space) and simple (in channels) to coarse and complex
features. Several resolution-channel scale stages progressively [ Linear ] [ Linear ] [ Linear ]
increase the channel capacity of the intermediate latent sequence
while reducing its length and thereby spatial resolution. THW x D
stage operators output sizes stage operators output sizes stage operators output sizes
data stride 8x 1x 1 8x224x224 data stride 4 1x 1 16224 %224 data stride 4 x 1x 1 16x224 %224
1x16x 16, 768 3x7x7,96 o 3x8x8, 128
: 76 : 96 x8X56X5 28 X 8 X 28 X 2¢
patchy s 1 16216 768 x8x 14x 14 cube; o i )6 X8X56%56 cube; stiids 23¢9 8 128 X 8x28 %28
i MHA(768) = MHPA(96) : MHPA(128) .
scales MLP(3072) x12| 768x8x14x 14 scales MLP(384) x1 96 X8 X 56 %56 scales MLP(512) x3| 128x8x28x28
i MHPA(192) : ] MHPA(256) =
scales MLP(768) x2 192x8x%28x28 scaleg MLP(1024) X7| 256x8x14x14
. MHPA(384) . MHPA(512) e
scaley MLP(1536) x11| 384x8x14x14 scaley MLP(2048) x6 S12%8x%7x7T
3 MHPA(768) o
o s:alio_ MLP(*(W’) X2 768 %X 8X7x7 o
|(d) ViT-B Vith 179.6G FLOPs, 87.2M param, (b) MViT-B with 70.5G FLOPs, 36.5M param, l(c) MViT-S wnth 32.9G FLOPs, 26.1M param,

*16:8G memory, and 68.5% top-1 accuracy.
Table 3. Comparing ViT-B to two instantiations of MViT with varying complexity, MViT-S in (¢) and MViT-B in (b). MViT-S operates at
a lower spatial resolution and lacks a first high-resolution stage. The top-1 accuracy corresponds to 5-Center view testing on K400. FLOPs
correspond to a single inference clip, and memory is for a training batch of 4 clips. See Table 2 for the general MViT-B structure.

5.8G TMeémadty, and 77.2% top-1 accuracy.

4.3GMmehiory, and 74.3% top-1 accuracy.
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Relational Self-Attention (NeurlPS 2021)

A new dynamic feature transform, which effectively captures both

Relational Self-Attention: visual appearance and spatio-temporal motion dynamics for video
What’s Missing in Attention for Video Understanding understanding.

[Submitted on 2 Nov 2021]

Manjin Kim'* Heeseung Kwon'* Chunyu Wang®? Suha Kwak! Minsu Cho'
1POSTECH 2Microsoft Research Asia
http://cvlab.postech.ac.kr/research/RSA/

S
Abstract Basic kemel | - Relatjonal kernel g

K5

Convolution has been arguably the most important feature transform for modern )

neural networks, leading to the advance of deep learning. Recent emergence of
Transformer networks, which replace convolution layers with self-attention blocks,
has revealed the limitation of stationary convolution kernels and opened the door to
the era of dynamic feature transforms. The existing dynamic transforms, including
self-attention, however, are all limited for video understanding where correspon-

Basic g¢ontext (CxC)

! ® : dot-product 1
1 ® :hadamard-product!

representtion. I tis work, we itroduce a reltionl festure transform. dubbed ’ n X S L o o vecr
) ’ ) i . L MxC () M xC MC x M MxC MxC . ati !
the relational self-attention (RSA), that leverages rich structures of spatio-temporal ( ) ( ) ( ) { ) : : '\ v_ec_ '_Ve_ﬂ_oniat_m_ - !

relations in videos by dynamically generating relational kernels and aggregating re-
lational contexts. Our experiments and ablation studies show that the RSA network  Figure 2: Computational graph of RSA. RSA consists of two types of kernels (basic and relational

substantially outperforms convolution and self-attention counterparts, achieving kernel) and two contexts (basic and relational context). See text for details.
the state of the art on the standard motion-centric benchmarks for video action

recognition, such as Something-Something-V1&V2, Diving48, and FineGym.

Re-interpret dynamic feature transforms in a unified way, and provide in-depth analysis on their capability of learning video
representation, designed to learn rich spatio-temporal interaction patterns across input contents.



Convolution vs. Transformer

It is difficult for ConvNets to capture long-term dependencies, while self-attention layers are global.

Convolution units (xM)

// / / Local receptive field

(a)

MLP

Head —= (Class

|__ Global information
passed to next layer

MLP

Class
Head ) —

Flattening
patches and positional embedding  Attention units (xN)

S Tuli et al., “Are Convolutional Neural Networks or Transformers more like human vision?,” CogSci, 2021.

Convolution is efficient in memory and
compute.

Local connectivity can lead to loss of
global context.

Bad at long sequences(Need to stack
many conv layers for outputs to “see”
the whole sequence).

Transformers are flexible and attend to
information at various distances away
from Patch.

Good at long sequences

- output sees “all” inputs.

Dynamic w.r.t input

- output “sees” inputs adaptively.

Very memory-intensive



Motivation - Problems in Self-Attention for learning motion

Vision Transformer, the vision transduction model based entirely on attention, replacing the CNN layers.

approach model K400 top-1(%)(@) SSV2top-1(%)(b) Gap(%) (a)-(b)
Transformer | Encoder [ r -
) ) : ) TSM [12] 74.1 63.4 | 1 107 1
oo g b § 1 1
MSNet [8] 76.4 | 647 1117 :
@_. ConvNet _ | 1
MoViNet-A3 [7] 78.2 | 64.1 | 1 141 1
= ‘ SELFYNet [9] 76.9 V657 P'112
8 L x| [ Self-Attention) - [ N l |
S TimeSformer-L [2] 80.7 1 62.3 1 18.4
= e , | I |
tokens Dot-Product MVIT-B 16x4 [5] | 78.4 1 64.7 | 13.7
. et Transformer 1
: VIVIT-L [1] I 817 65.9 11538 :
| 1
=_a= Swin-B [17] v 827 | 69.6 L 131

Table 1. Performance comparison on Kinetics-400 (K400) and Something-V2 (SSV2)
Video Vision Transformer (ViViT) [1] g, € R¢
n

K, VnCSMRM Self-attention [16] represents the global information of a sequence.
PER (global view - appearance is better)
Vo = Softmax(qug + anT)Vn Convolution kernel is spatial-agnostic and channel-specific.

(local view - motion is better)

Attention is NOT All You Need, at least, for Videos.
(no improvement over generic motion information)



Feature transform

M : the size of neighborhood,

n : a specific position(spatio-temporal) Basic Context
CxC : channel dimension (in x out) vV v
E : learnable embedding matrices EQ, EK’ EVY = RCEXC ———>Xn — XnE

M xC
An €R /‘/ iy 1eRM
]
i 1(1. ) X,I;{ c RMxC

M(e.g., M=5x7x7)

'\\
X € RT)(HXW’XC -
( | Y/ oz, € IRC——*:BS = :BHEQ.
t,h W' S (0w )EN (1, h,w) Target Vector (Channel dimension)
. — . Output Vector
Xt Y = [ (@, X; W) p

Yy, € RC



Self-Attention in Space and Time

Space-time

query Xn €

‘II context X,, € RM

1<‘D

-

query x,, € R¢

Individual query-key interaction for each kernel weight.
Permutation-invariant output (motion-agnostic)
Limited expressive ability due to the softmax

y, € R¢

12 e RE

XK xV, P € RM*C
Pc RMXC

o(-): softmax

Uy

context X,, € RM*¢

s

I Context

T
v Yo =o(xHXK) + xSPT)X_}{

Kernel Context



Relational Self-Attention (RSA)

! @ addition ® dot-product O Hadamard- product m vectorization | VvV Q T
B e T K, =x,P

Kernel :

Basic Kernel : Weights based on the content of the query itself
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Datasets - Motion centric benchmark

Something-something vl & v2 (SS-V1 & V2) [6] are both large-scale action recoanition benchmarks,
including 108k and 220k action clips

Figure 1: Pouring [something] L

Diving-48 [11] is fine-grained action benchmark that is heavily dependent on temporal modeling containing
18k videos with 48 diving classes

Figure 1: ['Forward', '15som’, ‘NoTwis', 'PIKE]

FineGym [14] includes gymnastics actlon classes Gym288 and Gym99 that contain 288 and 99 action
classes ;

Figure 1: Balance Beam



Ablation Studies on Something-V1

Table 4: Ablation studies on SS-v1 dataset. All models use TSN-ResNet50 [57] as the backbone.
Top-1, top-5 accuracy (%), FLOPs (G) and paramaters (M) are shown.

(a) Combinations of different kernels and context. (b) Latent dimension ). Decomposing H signifi-
A single RSA layer is inserted into stage4. cantly reduces the computation cost. OOM is an abbre-
biation of out-of-memory. § video clips per a single

kernel context FLOPs params. top-1 top-5 GPU machine are used.

K xV 323G 234M 448 738

KR XV 327G 236M 454 739 D FLOPs  params. memory top-l1  top-5
n:' + K,E ‘X?\’3 327G 23.6M 45.7 74.8 _ 62.9G 32.0M OOM OOM OOM

"y X 327G 234M 462 754 8 322G 205M 88GB 501 788

Ky X 332G 236M 465 756 16 347G 209M 92GB 513 788
kY + KR xR 332G  23.6M 467  75.6 32 396G 217M  102GB 509 790

; - Q
Y XViX' 327G 234M 465 756 CpéfQ 32.:) G 211M 88GB 5Ll 73;;
it XVixR 332G 236M 468 756 359G  220M  96GB 515 7

r T r
Y+l XV4XE 332G 236M 470 757

(c) Kernel size M. In most cases, larger kernel results  (d) Group GG. Hadamard product (G = C) performs
in the higher accuracy. the highest accuracy. Note that FLOPs are consistent
with varying G due to the switched computation order.

kernel size M FLOPs params. top-1 top-5
3x3x3 285G 203M 494 776 # Groups G FLOPs params. top-1 top-5
3x5x5 302G 207M 505 787 1 359G 202M 504 789
3xTxT 326G 212M 507 789 2 359G 202M 509 789
3x9x9 358G 220M 511 79.1 4 359G 203M 512 789
5x7x7T 359G 220M 515 792 8 359G 205M 512 790

2x9x9 413G 233 M 51.2 78.9 cQ 359G 220M 515 79.2




Comparison to SOTA

State-of-the-art on three motion-centric video benchmarks

(a) S§-V1&V2. IN and IN21K and K400 denote ImageNet-1k, ImageNet-  (b) Diving-48. Top-1 accuracy,
21K, and Kinetics-400 dataset, respectively. Our method achieves a new FLOPs are shown. Results in the

state-of-the-art accuracy on both datasets. upper compartment are from [3].

pre- FLOPs SS-V1 S§-V2 FLOPs  top-1

model trained #irame =elips top-1  top-5  top-1  top-5 model xclips

13D [5] from [59] IN 32 153Gx2 416 722 - - SR S i

TSM-R50 [32] IN 16 65Gx1 472 771 634 885 TimeSformer-HR [3]  1703Gx3  78.0

ir-CSN-152 [52] - 32 97 Gx10 493 - - - TimeSformer-L [3]  2380Gx3  81.0

SlowFast8 x8-R50[11] K400 32 67 Gx3 - - 61.7 869

CT-Net-R50 [29] IN 16 75Gx1 525 809 645 893 RSANet-R30 PGx2 842

STM-R50 [22) IN 16 67 Gx30 507 804 642 898 .

CorrNet-R101 [56] - 32 187Gx10 509 - - - (c) FineGym. The averaged per-

TEA [30] IN 16 710G =3 523 819 651 899 class accuracy (%) is reported.

MSNet-TSM-R50 [24] IN 16 67Gx1 521 823 647 894 All results in the upper compart-

NL-13D [58] from [59] M a2 168 Gx2 444  T6.0 - - ment are from [41].

TimeSformer-HR [3] IN 16 1703 G=3 - - 62.2 -

TimeSformer-L [ J'.l N 96 2380 G=3 - - 62.4 - model G}-‘m"ﬂﬂ G}"Ingg

- IN21K -
ViViT-L [1] e ko 32 N/A x4 - - 654  89.8 TRN [64] 331 8.7
13D [5 279 63.2
RSANet-R50 (ours) I 16 T2Gx=1 54.0 #1.1 66.0 89.8 TSM - [32] 4'55 EI-‘}
RSANet-R50zy (ours) IN 8+16  108Gx1 555 826 673 908 Dworstream T~ : -

RSANet-R50g i (ours) IN B+l6 I08G=2 561 828 67.7 911 RSANet-R50 50.9 86.4




Kernel visualization results on SS-V1

Reverse the temporal order of an input video clip(motion information)

Input Video

Self-Attention 1t [l
kernel

Basic
Kernel (k)

o m — —————

kernel (kR)

: Relational
1
\

————

(a) ‘Moving something down.’ (origin) (b) ‘Moving something up.’ (reversed order)
the relational kernel dynamically varies according to whether the object moves up
or down but the basic kernel remains the same and the self-attention kernels are
limited to aggregating the local context based on the query-key similarities.



Conclusion

1) Problems in self-attention:

- Individual query-key interaction for each kernel weight,
resulting in output feature to be motion-agnostic.

- Limited expressive ability due to the softmax.

- Computational Complexity of Self-Attention.

2) Contributions:

- In-depth analysis on temporal modeling capabilities of recent dynamic feature transforms.
- The novel relational self-attention for capturing fine-grained temporal dynamics.

- State-of-the-art on three motion-centric video benchmarks.

3) Limitation:

- The computational efficiency of the RSA could be further improved.
- There will be a more generalized dynamic transform.

- Outperform recent works (Uniformer)
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