Paper Review

What Makes for Good Tokenizers

In Vision Transformer?

Shengju Qian, et al.

The Chinese University of Hong Kong & Amazon Al
TPAMI 2022

Industrial Al Research, POSCO DX
Vision Lab Susang Kim



Contents

1.Introduction
2.Motivation
3.Methods

4 Experiments
5.Conclusion



1.Introduction - Vision Transformer

Ouipul
Probabilities

Transformer Encoder

A

[ Lx o

Vision Transformer (ViT)

MILP
Head

Add & Norm

Add & Norm

Multi-Head
Attention

Transformer Encoder

N Acd & Norm Ad; i;jm

Anion ]| || onion PEmneaamg = O O @) GL) €U G0 @) @
- - — — - — e * Exlra learnable \ . . 5=
( Posmo:gﬁ_—‘v OB [slass] cmbeddiag [ Linear Projection of Flattened Patches }
I Encoding { En(;oc:in_c; | A i.\l - _I - _|_ _|_ - I_ - I_ I _I —_ _I -
1 I Input I | Output 1 THER: i

(
|
\ Embedding Embedding ] i l—wa - . m %
_____ R :mmg o o
\

Multi-Head
Attention

Norm

A

1o,
|
|

Inputs Qutputs ]
{shiffed righty = e e -

/
I{ Embedded |l
1 Patches |

N o = = = - 4

Attention is all you need.

While being the stemming building block of transformers, what makes for a good tokenizer has not
been well understood in computer vision.
The influence from different tokenizer designs still lacks principled discussion and analysis.

Alexey, et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021.



1.Introduction - Convolution vs Self-Attention (Module)

It is difficult for ConvNets to capture long-term dependencies, while self-attention layers are global.
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S Tuli et al., “Are Convolutional Neural Networks or Transformers more like human vision?,” CogSci, 2021.



1.Introduction - Feature visualization of local structure

ResNet50: convl ResNet50: conv25
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Green boxes highlight learned low-level structure features such as edges and lines;
red boxes highlight invalid feature maps with zero or too large values in ViT.

YUAN, Li, et al. Tokens-to-token vit: Training vision transformers from scratch on imagenet. ICCV 2021.



1.Introduction - “patchifying” in Vision Transformer
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WANG, W, et al. CrossFormer: A versatile vision transformer hinging on cross-scale attention. arXiv 2021.
YUAN, Li, et al. Tokens-to-token vit: Training vision transformers from scratch on imagenet. ICCV 2021. [ Transformer I
Michael S., et al. Tokenlearner: What can 8 learned tokens do for images and videos?. NeurlPS 2021. :




1.Introduction - Mutual Information

Mutual information initially measures dependencies between random variables. Given A and B, I(A; B)
estimates the “amount of information” learned from B about the other variable A and vice versa.

hxwx3 N
o c Rn x1 H == pilog(p) I(A;B) = H(A) - H(AB)
B - R token # btoken im1 2 H(A) - R(A|B)
I(A; B) B H(A) a H(A‘B) - H(B) N H(B|A) H(A) = A’s marginal entropy

_ pix,y) (2, ) _ H(A,B) = A,B joint entropy
[(X;Y) = Z Pix,y) (z,y) log W = DKL(P(Xa Y)HP(X)P(Y)) H(A|B) = A’s conditional entropy
zeX,yey bx\z)pr\yY R(A|B) = expected error for reconstructing

P(X,Y)(m:y)
= > pan(@ylee——-—— Y pxy(z,y)logpy(y)
reXgey px(z) fex,yey HEX,Y)
= Y px(@)pvix—a W) logpyix—(¥) = Y Py (2.9)logpy(y)

zeX WEY reX yely H(X) H(Y)
= px(z) (ZPYlX:m (v) log py|x—a (y)) -y (Zp(x,m ($>y)) log pv (y)
zeX yel ye,}’ reA
==Y px(@H(Y | X =2) - Y pr(y)logpy(y
zeX yey
= -H(Y | X) +H(Y) VI(X,Y)
—H(Y) - H(Y | X). MI = Independent = 0 = entropy

https://en.wikipedia.org/wiki/Mutual _intformation
https://www.microsoft.com/en-us/research/blog/deep-infomax-learning-good-representations-through-mutual-information-maximization/



https://en.wikipedia.org/wiki/Mutual_information
https://www.microsoft.com/en-us/research/blog/deep-infomax-learning-good-representations-through-mutual-information-maximization/

1.Introduction - Mutual Information Maximization

Local Feature Multiple

Deep InfoMax (DIM) simultaneously estimates and maximizes the mutual Vectors G'Ot\’/a'cfera“"e
eclors

information between input data and learned high-level representations.

I(X; E,(X)), is maximized.
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HJELM, R. Devon, et al. Learning deep representations by mutual information estimation and maximization. ICLR 2019.
https://www.microsoft.com/en-us/research/blog/deep-infomax-learning-good-representations-through-mutual-information-maximization/
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2.Motivation - Structural Desians for Vision Tokenizer
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" (@) Intra-token refinement (b) Locality (c) Inter-token refinement

a) Intra-token refinement: stride-p, p x p convolution, naive “patchifying” fails to capture rich context
inside the tokens (multi-scale embeddings, models sub-token)

b) Locality: Overlapping and uneven token embeddings have been tailored.

c) Inter-token refinement: Modeling intertoken relationship intuitively helps tokenizers encode better
features. This refinement suggests performing global context modeling inside the tokenizers.



2.Motivation - Performance with different tokenizers

. Tokenization Classification .
Architecture Intra Local Inter Frozen Params  GFLOPs Linear [18] Supervised Segmentation
Deil-5 = = = = 21 16 T 681 1 T798 | 440
Deil-B - - - - 86.6 17.6 THY6 BL.S 45.2
DeiT-S v 221 4.6 ;| 69.01 |r7‘9.4 1 42.9
DeiT-S v 22.3 4.7 ~682” BOS5 44.3
DeiT-S v v 223 5.1 68.5 80.9 44.6
DeiT-S v v v 25.7 6.9 68.7 82.0 45.0

Performance on various vision tasks with different tokenizers. “Intra”, “Local”, and “Inter” respectively refer to applying
the intra-token, locality, and inter-token refinement strategies. “Frozen” refers to the frozen randomly-initialized
tokenization in MoCov3.

1) Empirical correlations exist between increasing token diversity and better results. (more checking)
2) Maximizing conditional entropy doesn’t guarantee better performance. H(A|B) = A’s conditional entropy
- Randomly-initialized frozen tokenizer maximizes conditional entropy and token diversity, it gives inferior performance
3) Tokenizers might influence optimization across tasks.(better linear performance with frozen token.)
4) The goal of tokenizer is to maintain a trade-off
between feature expressiveness and information accessibility.

Motivated by these findings, we expect our tokenizer to simultaneously maintain the information
accessibility and feature quality. Therefore, we further study versatile and unexplored design strategies
for vision tokenizers, through normalization and optimization.



2.Motivation - Normalization in Vision Tokenizer

Although the importance of normalization has been acknowledged in transformer for both language and vision,
it has rarely been explored inside the tokenizer.
Considering the semantic variations between images, patch tokens tend to encounter semantic variation
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information. Such “filtered” effect
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3.Method - “wash away” semantic information (SPADE)
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The spatially-adaptive normalization, which utilizes the input semantic layout
while performing the affine transformation in the normalization layers.

PARK, Taesung, et al. Semantic image synthesis with spatially-adaptive normalization. CVPR 2019.



3.Method - Modulation Across Tokens (MoTo)

To modulate the diverse semantics in input using regional statistics. This strategy not only formulates
feature distributions, but also provides the tokenizer with more plausible semantic content.

Input X € thwxa f(X) c thwxfn Zeth-wxn
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3.Method - On Various Transformer Architectures.
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Ze, et al. Swin transformer: Hierarchical vision transformer using shifted windows. ICCV 2021.

Wenhai, et al. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. ICCV 2021.
Hugo, et al. Training data-efficient image transformers & distillation through attention. ICML 2021.

Li, et al. Tokens-to-token vit: Training vision transformers from scratch on imagenet. ICCV 2021.



3.Method - Performance of image recognition on ImageNet

To further validate that MoTo is versatile with different tokenizers and transformer
architectures, we integrate the proposed module to several state-of-the-art methods

IA‘rans.former Model Params GFLOPs | Accuracy A
rchitecture

Deil-S 22.1M 4.6 79.8 -

) w MoTo 22.5M 4.8 81.6 +1.8
ViT [1], [20] DeiT-B S66M 176 818 :

w MoTo 86.9M 17.9 82.9 +1.1
. T2T-ViT-14 21.5M 5.2 81.5 -

T2T-ViT [17] w MoTo 21.8M 5.4 823  +0.8
PVT-Small 24 5M 3.8 79.8 -

w MoTo 24.7M 4.0 81.0 +1.2
PVT-Medium | 44.2M 6.7 81.2 -

PVII5L 1391 | © ' MoTo 44.5M 6.9 821  +09
PVTv2-B2 25.4M 20 82.0 -

w MoTo 25.6M 4.2 82.7 +0.7
Swin-T 28.3M 45 81.2 -

Swin [28] w MoTo 28.6M 4.7 82.2 +1.0
Swin-S 49.6M 8.7 83.0 -

w MoTo 49 9M 8.9 83.7 +0.7

the consistent improvements are made across different transformer architectures.



3.Method - Complexity Analysis

TABLE 3
Inference wall time (ms) with different input scales. Features are
fed into the same GPU with a batch size of 1 and channel number of 16.
OOM denotes out-of-memory. Note that the definition of self-attention
here pixel refers to the pixel-wise self-attention in tokenizer.

Component 224 % 224 384 x 384 512 x 512 1024 x 1024
Self-attention 412 23.58 OOM OOM
MoTo 0.52 1.67 423 18.42

MoTo incorporates global context modeling to vision tokenizer using normalization.
MoTo provides a computational-friendly choice to perform intertoken modulation.  Q(NCHW)

The actual computation of injecting pixel-wise regional information with self-attention
scales quadratically, which is unfeasible for processing high-resolution images. .
O(C(HW)?)



3.Method - Visualization of semantic layout

L' e Rlxlxk
2,7

we colorize each location (i, j)
using the index with the highest
probability.

(a)

Visualizations of the self-learned semantic layout. Both image (a) and (b) are testing
images. Each color shown in the layout denotes a semantic entity in the soft layout L.

the semantic entities highlight the difference between foreground, background, and instances.
Notably, the entities represent some details on cat face.
Normalizing these feature points with semantic grouping improves the feature quality of tokens.

MoTo(X) = Z( }j(;(‘g)f‘jfl)

=1

X i +a;) ®L;



3.Method - Ablations about MoTo

Semantic Entities

Partition Strategy

Top-1 Accuracy

Val A

Z - 79.8 -
n=2 Soft 80.8 +1.0
n=4 Soft 81.1 +1.3
n==8 Soft 81.6 +1.8
n=16 Soft 81.7 +1.9
n =16 Hard 80.5 +0.5
n =232 Hard 80.8 +0.8

Then Z is normalized using softmax to generate the soft

layout at k-th semantic entity

where k € [0,n — 1] and 7 is the temperature coefficient
set to 0.1. Each L; € R"*% indicates the probability of the

exp(7Zy)

N St exp(TZ;)’

spatial pixels belonging to entity k.

choose n = 8 for most experiments.
considering the tradeoff between
effectiveness and complexity.

L e thwxn

soft semantic layout

we implement argmax on the
activation maps spatially and further
obtain a class map to perform hard
partition.



3.Method - Experimental Analysis with MoTo

TABLE 5
Ablation study on absorbing MoTo into transformer blocks. The Absorbing MoTo into transformer blocks
baseline architecture uses DeiT-S. We adopt a MoTo layer with 8

semantic entities and ensemble it into transformer blocks. The We further conduct a pilot study to ensemble MoTo
placement denotes the layer number of transformer block that adopts ~ at the end of each transformer layer.
MoTo.
Placement Top-1 Accuracy

Tokenizer 1-4 4-8 8-12 | Val A
- - - - 79.8 -
v 81.6 +1.8
v v 81.8 +2.0
v v v 81.9 +2.1 TABLE 6
v v v v 81.4 +1.6 Comparison of different normalizations in tokenizer. The baseline

Comparison with different normalizations.

As shown in Table 6, both BN and LN slightly
harm the model’s performance. As analyzed, Deil-S
such normalization methods bring “filtered” effect on ~giT-5

tokens’ features.

architecture uses DeiT-S. Each row denotes result trained with different
normalization strategy. Top-1 Accuracy denotes the validation accuracy
on ImageNet.

Model | Normalization in Tokenizer | Top-1 Accuracy

- 79.8

Layer Norm 79.6

DeiT-S Batch Norm 79.5
DeiT-S Instance Norm 80.1

DeiT-S MoTo 81.6




3.Method - TokenProp Objective

The core idea of TokenProp is to provide optimization Model Loss Type _{?I;'l Acc‘gacy
objectives for vision tokenizer, which lead to better token Baseline - 79?8 =
representations by maintaining the trade-off between - I 802 04
feature fineness and information accessibility. - Lo 80.7 +0.9
_ - Perceptual Loss [83] | 80.4 +0.6
I(A:B)=H(A)-H(AB) > H(A)—R(A|B) - Contextual Loss [84] | 80.8 +1.0
arg max [ (A;B) = argmax —R(A|B) Vodel | Toss Weight » Top-1 Accuracy
oaqe 055 ¥vel =
dependent = argmaxE,a p)[logq(A|B)] | Val A
_ _ Baseline - 79.8 -
we estimate the parameters of q(A|B) using a decoder network _ 0.001 807 109
G_6. Ideally, zero information loss through the tokenization process - 0.01 20.4 +0.6
retains all information including the useful one. - 0.1 80.6 +0.8
migirrbizeﬁ(Fw(F¢(x)); Y) + ALrec(Go(F(x)): x) : 1.0 NaN :
Sy
. _ _ Decoder Channel =~ Output Scale | Accuracy | Training Overhead
Xt input, y : label, ¢, w .0 : 1 64 x 64 80.7 11%
parameters of respective modules <1 178 x 108 304 kA
x1 256 x 256 77.3 (}) 15.1%
x 2 64 < 64 80.4 6.9%
x4 64 < 64 80.5 9.1%




4.Experiments - ImageNet validation with TokenProp

TokenProp serves as a regularization term that
provides the encoded features from tokenizers with more diversity.

Transformer ..
Architecture Model Accuracy A Training Overhead
. Deil-S 80.7 +0.9 4.1%
ViT [1], [20] DeiT-B 825 407 3.5%
: T2T-ViT-14 82.2 +0.7 4.9%
T2EVITI7] | orvia9 828  +0.9 4.4%
PVT-Small 80.9 +1.1 5.1%
PVIISL 9T | pyTMedium | 818 +06 4.6%
Swin [28] Swin-T 82.3 +1.1 6.7%
Model Variants Optimizer F{?ﬁ'l Acci‘acy TokenProp enables the adaptability of the
DeiTS AdamW 7] - model towards SGD, which significantly
D eiT—é ‘ S‘GD ?6:7’ 13.1 reduces the performance drop.
DeiT-S w Frozen [18] AdamW 79.4 -
DeiT-S w Frozen [18] SGD 76.0 134
DeiT -5 [11] SGD 78.2 116
DeiT-S w TokenProp SGD 78.9 10.9
DeiT~-5* w TokenProp SGD 79.6 10.2




4.Experiments - MoTo and TokenProp / Data inefficiency

We can see that the models could be further boosted, suggesting
the compatibility of structural and objective designs.

Model Architecture | w MoTO  w TokenProp | Accuracy
DeiT-S - - 79.8
Ours v v 82.6
T2T-ViT-14 - - 81.5
Ours v v 82.8
Swin-T - - 81.2
Ours v v 82.9

We follow the original training hyper-parameters in, while only leverage a
limited portion of ImageNet-1k training set and 100 epochs for training.

Training Dataset

Percentage (%)

Val Tﬂp-l Accuracy

Baseline w QOurs A
50 73.7 75.1 +1.4%
40 71.6 73.2 +1.6%
ImageNet-1k 20 61.2 639  +2.7%
10 43.5 46.5 +2.9%




4.Experiments - Downstream Tasks

Downstream performance of semantic segmentation on ADE20K dataset.

Module

Method Backbone i Pre-trained Crop Size LR Schedule | mloU
oTo  TokenProp

OCRNet [87] HRNet-w48 ImageNet-1k | 512 x 512 150K 45.7

DeiT-S ImageNet-1k | 512 x 512 160K 44.0

DeiT-S w Frozen [18] ImageNet-1k | 512 x 512 160K 429

UperNet DeiT-S v ImageNet-1k | 512 x 512 160K 44.5

DeiT-S v ImageNet-1k | 512 x 512 160K 443

DeiT-S v v ImageNet-1k | 512 x 512 160K 44.7

Swin-T ImageNet-1k | 512 x 512 160K 45.8

UperNet Swin-T v ImageNet-1k | 512 x 512 160K 46.3

Swin-T v ImageNet-1k | 512 x 512 160K 46.4

Swin-T v v ImageNet-1k | 512 x 512 160K 46.7

Swin-S ImageNet-1k | 512 x 512 160K 49.1

UperNet Swin-S v ImageNet-1k | 512 x 512 160K 49.4

pe Swin-S v ImageNet-1k | 512 x 512 160K 49.4

Swin-S v v ImageNet-1k | 512 x 512 160K 49.6




4.Experiments - Downstream Tasks

Downstream performance of object detection and instance segmentation on COCO 2017.

Framework Backbone Pre-trained | LR Schedule IES:; I\I;IlaAsll;c
PVTv2-bl ImageNet-1k 1x 41.2 -
. PVTv2-bl w MoTo ImageNet-1k 1x 41.8 -
RetineNet [88] PVTv2-b1 w TokenProp  ImageNet-1k 1x 15 -
PVTv2-bl w Both ImageNet-1k 1x 42.0 -
PVTv2-bl ImageNet-1k 1x 41.8 38.8
PVTv2-bl w MoTo ImageNet-1k 1x 42.4 39.1
Mask R-CNN [89] PVTv2-bl w TokenProp  ImageNet-1k 1x 1023 394
PVTv2-bl w Both ImageNet-1k 1x 42.9 39.4
Swin-T ImageNet-1k Ix 43.7 398
Swin-T w MoTo ImageNet-1k 1x 44.1 40.1
Mask R-CNN [89] Swin-T w TokenProp  ImageNet-1k 1x 442 400
Swin-T w Both ImageNet-1k 1x 44.6 40.4
Swin-T ImageNet-1k Ix 48.1 41.7
Swin-T w MoTo ImageNet-1k 1x 48.7 42.1
Cascade Mask R-CNN[90] | i T w TokenProp  ImageNet-1k 1x 48.6 419
Swin-T w Both ImageNet-1k 1x 49.1 42.4




5. Conclusion and Future Work

[Conclusion]
We demonstrate the important role tokenizer plays in vision transformers.

Based on the “trade-off” perspective that formulates prominent structural designs, we propose to
incorporate better normalization and objective for tokenizers.

Extensive experimental results manifest their effectiveness across different transformer structures.

Our findings further indicate that proper generative supervisory signals help improve discriminative
performance.

[Future Work]
On self-supervised learning with MAE and BEIT validates the potential of reconstruction objectives.

Generalizing such generative signals to different tasks remains an open problem.
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