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1.Introduction - Vision Transformer

While being the stemming building block of transformers, what makes for a good tokenizer has not 

been well understood in computer vision. 

The influence from different tokenizer designs still lacks principled discussion and analysis.

Alexey, et al. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021.

Attention is all you need.



1.Introduction - Convolution vs Self-Attention (Module)

It is difficult for ConvNets to capture long-term dependencies, while self-attention layers are global.

S Tuli et al., “Are Convolutional Neural Networks or Transformers more like human vision?,” CogSci, 2021. 



1.Introduction - Feature visualization of local structure

YUAN, Li, et al. Tokens-to-token vit: Training vision transformers from scratch on imagenet. ICCV 2021.

Green boxes highlight learned low-level structure features such as edges and lines; 

red boxes highlight invalid feature maps with zero or too large values in ViT.



1.Introduction - “patchifying” in Vision Transformer

The input image is sampled by four

different kernels with same stride 

4 × 4 in CEL layer.

WANG, W., et al. CrossFormer: A versatile vision transformer hinging on cross-scale attention. arXiv 2021.

YUAN, Li, et al. Tokens-to-token vit: Training vision transformers from scratch on imagenet. ICCV 2021.

Michael S., et al. Tokenlearner: What can 8 learned tokens do for images and videos?. NeurIPS 2021.

The tokens Ti are restructurized as an 

image Ii after transformation and 

reshaping

TokenLearner learns to spatially attend 

over a subset of tensor pixels (i.e., from 

intermediate spatial representations), and 

generates a set of token vectors adaptive 

to the input. 



1.Introduction - Mutual Information

Mutual information initially measures dependencies between random variables. Given A and B, I(A; B) 

estimates the “amount of information” learned from B about the other variable A and vice versa.

https://en.wikipedia.org/wiki/Mutual_information

https://www.microsoft.com/en-us/research/blog/deep-infomax-learning-good-representations-through-mutual-information-maximization/

H(A) = A’s marginal entropy

H(A,B) = A,B joint entropy

H(A|B) = A’s conditional entropy

R(A|B) = expected error for reconstructing

MI = Independent = 0 = entropy

https://en.wikipedia.org/wiki/Mutual_information
https://www.microsoft.com/en-us/research/blog/deep-infomax-learning-good-representations-through-mutual-information-maximization/


1.Introduction - Mutual Information Maximization

HJELM, R. Devon, et al. Learning deep representations by mutual information estimation and maximization. ICLR 2019.

https://www.microsoft.com/en-us/research/blog/deep-infomax-learning-good-representations-through-mutual-information-maximization/

Deep InfoMax (DIM) simultaneously estimates and maximizes the mutual 

information between input data and learned high-level representations.

dependent

https://www.microsoft.com/en-us/research/blog/deep-infomax-learning-good-representations-through-mutual-information-maximization/


2.Motivation - Structural Designs for Vision Tokenizer

a) Intra-token refinement: stride-p, p × p convolution, naive “patchifying” fails to capture rich context 

inside the tokens (multi-scale embeddings, models sub-token)

b) Locality: Overlapping and uneven token embeddings have been tailored.

c) Inter-token refinement: Modeling intertoken relationship intuitively helps tokenizers encode better 

features. This refinement suggests performing global context modeling inside the tokenizers. 



2.Motivation - Performance with different tokenizers

Performance on various vision tasks with different tokenizers. “Intra”, “Local”, and “Inter” respectively refer to applying 

the intra-token, locality, and inter-token refinement strategies. “Frozen” refers to the frozen randomly-initialized 

tokenization in MoCov3.

1) Empirical correlations exist between increasing token diversity and better results. (more checking)

2) Maximizing conditional entropy doesn’t guarantee better performance. H(A|B) = A’s conditional entropy

- Randomly-initialized frozen tokenizer maximizes conditional entropy and token diversity, it gives inferior performance 

3) Tokenizers might influence optimization across tasks.(better linear performance with frozen token.)

4) The goal of tokenizer is to maintain a trade-off 

between feature expressiveness and information accessibility.

Motivated by these findings, we expect our tokenizer to simultaneously maintain the information 

accessibility and feature quality. Therefore, we further study versatile and unexplored design strategies 

for vision tokenizers, through normalization and optimization.



2.Motivation - Normalization in Vision Tokenizer

Although the importance of normalization has been acknowledged in transformer for both language and vision, 

it has rarely been explored inside the tokenizer. 

Considering the semantic variations between images, patch tokens tend to encounter semantic variation

The addition of batch normalization 

(BN) to the patchify stem worsens 

its accuracy. 

According to previous analysis 

normalization layers tend to “wash 

away” texture and semantic 

information. Such “filtered” effect 

inevitably reduces token diversity and 

possibly cuts off necessary diversity in 

transformer.



3.Method - “wash away” semantic information (SPADE)

PARK, Taesung, et al. Semantic image synthesis with spatially-adaptive normalization. CVPR 2019.

m to the scaling and bias values at the 

site (c, y, x) in the i-th activation map.

The spatially-adaptive normalization, which utilizes the input semantic layout 

while performing the affine transformation in the normalization layers.



3.Method - Modulation Across Tokens (MoTo)

To modulate the diverse semantics in input using regional statistics. This strategy not only formulates 

feature distributions, but also provides the tokenizer with more plausible semantic content.

soft semantic layout

the probability of the spatial 

pixels belonging to entity k

where k ∈ [0, n − 1] and τ is the 

temperature coefficient set to 0.1.

default n = 8 MoTo incorporates global context to vision tokenizer using normalization.

convolution

n feature points (uniformly sampled)



3.Method - On Various Transformer Architectures.

Ze, et al. Swin transformer: Hierarchical vision transformer using shifted windows. ICCV 2021.

Wenhai, et al. Pyramid vision transformer: A versatile backbone for dense prediction without convolutions. ICCV 2021.

Hugo, et al. Training data-efficient image transformers & distillation through attention. ICML 2021.

Li, et al. Tokens-to-token vit: Training vision transformers from scratch on imagenet. ICCV 2021.

DeiT

T2T-ViT

Swin

PVT



3.Method - Performance of image recognition on ImageNet

the consistent improvements are made across different transformer architectures.

To further validate that MoTo is versatile with different tokenizers and transformer 

architectures, we integrate the proposed module to several state-of-the-art methods



3.Method - Complexity Analysis

MoTo incorporates global context modeling to vision tokenizer using normalization.

MoTo provides a computational-friendly choice to perform intertoken modulation.

The actual computation of injecting pixel-wise regional information with self-attention 

scales quadratically, which is unfeasible for processing high-resolution images.  



3.Method - Visualization of semantic layout 

Visualizations of the self-learned semantic layout. Both image (a) and (b) are testing 

images. Each color shown in the layout denotes a semantic entity in the soft layout L. 

the semantic entities highlight the difference between foreground, background, and instances. 

Notably, the entities represent some details on cat face.

Normalizing these feature points with semantic grouping improves the feature quality of tokens.

we colorize each location (i, j) 

using the index with the highest 

probability.



3.Method - Ablations about MoTo

choose n = 8 for most experiments. 

considering the tradeoff between 

effectiveness and complexity.

soft semantic layout

we implement argmax on the 

activation maps spatially and further 

obtain a class map to perform hard 

partition.



3.Method - Experimental Analysis with MoTo 

Absorbing MoTo into transformer blocks

We further conduct a pilot study to ensemble MoTo 

at the end of each transformer layer.

Comparison with different normalizations.

As shown in Table 6, both BN and LN slightly 

harm the model’s performance. As analyzed, 

such normalization methods bring “filtered” effect on 

tokens’ features.



3.Method - TokenProp Objective

x : input, y : label, φ, ω ,θ :  

parameters of respective modules

The core idea of TokenProp is to provide optimization 

objectives for vision tokenizer, which lead to better token 

representations by maintaining the trade-off between 

feature fineness and information accessibility.

we estimate the parameters of q(A|B) using a decoder network 

G_θ. Ideally, zero information loss through the tokenization process 

retains all information including the useful one.

dependent



4.Experiments - ImageNet validation with TokenProp

TokenProp serves as a regularization term that 

provides the encoded features from tokenizers with more diversity. 

TokenProp enables the adaptability of the 

model towards SGD, which significantly 

reduces the performance drop. 



4.Experiments - MoTo and TokenProp / Data inefficiency

We follow the original training hyper-parameters in, while only leverage a 

limited portion of ImageNet-1k training set and 100 epochs for training.

We can see that the models could be further boosted, suggesting 

the compatibility of structural and objective designs.



4.Experiments - Downstream Tasks 

Downstream performance of semantic segmentation on ADE20K dataset.



4.Experiments - Downstream Tasks 

Downstream performance of object detection and instance segmentation on COCO 2017.



5. Conclusion and Future Work

[Conclusion]

We demonstrate the important role tokenizer plays in vision transformers.

Based on the “trade-off” perspective that formulates prominent structural designs, we propose to 

incorporate better normalization and objective for tokenizers.

Extensive experimental results manifest their effectiveness across different transformer structures. 

Our findings further indicate that proper generative supervisory signals help improve discriminative 

performance. 

[Future Work]

On self-supervised learning with MAE and BEiT validates the potential of reconstruction objectives. 

Generalizing such generative signals to different tasks remains an open problem.
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