Paper Review

MetaFormer Is Actually What You Need for Vision Weihao Yu, et al. Sea Al Lab

CVPR 2022(Oral)

Industrial AI Research, POSCO DX Vision Lab Susang Kim

Contents

1.Introduction2.Motivation3.Methods4.Experiments5.Conclusion & Future Work

1.Introduction - Convolution

Li, Zewen, et al. "A survey of convolutional neural networks: analysis, applications, and prospects." IEEE transactions on neural networks

1.Introduction - Attentional Mechanism (Neural machine translation)

Neural machine translation a stacking recurrent architecture for translating a source sequence.

나는 지금 배가 고파서 피자 주문하고 싶다.

<eos>

D

나는 지금 배가 고파서 <mark>피자 주문</mark>하고 싶다

<eos>

Luong, Thang et al. "Effective Approaches to Attention-based Neural Machine Translation." EMNLP 2015.

1.Introduction – Self-Attention + Multi-Head Attention

Learning long-range dependencies is a key challenge in many sequence transduction tasks(RNN). As side benefit, self-attention could yield more interpretable models. We inspect attention distributions from our models.

The first sequence transduction model based entirely on attention, replacing the recurrent layers most commonly used in encoder-decoder architectures with multi-headed self-attention.

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel Mu size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

A. Vaswani et al. "Attention is All you Need.", NeurIPS, 2017.

Pl MultiHead(Q, K, V) = Concat(head₁, ..., head_h) W^O where head_i = Attention (QW_i^Q, KW_i^K, VW_i^V)

1.Introduction - Transformer

Han, Kai, et al. "A survey on vision transformer." IEEE TPAMI 2022.

1.Introduction - Convolution vs Self-Attention (Module)

It is difficult for ConvNets to capture long-term dependencies, while self-attention layers are global.

Convolution is efficient in memory and compute.

Local connectivity can lead to loss of global context.

Bad at long sequences(Need to stack many conv layers for outputs to "see" the whole sequence).

Transformers are flexible and attend to information at various distances away from Patch.

Good at long sequences

- output sees "all" inputs.

Dynamic w.r.t input

- output "sees" inputs adaptively.

Very memory-intensive

S Tuli et al., "Are Convolutional Neural Networks or Transformers more like human vision?," CogSci, 2021.

1.Introduction - Convolution vs Transformer (Architecture)

Wang, Wenhai, et al. "Pyramid vision transformer: A versatile backbone for dense prediction without convolutions." ICCV 2021.

1.Introduction – CNN+Transformer

stage	output	ResNet-50	BoTNet-50			
c1	512×512	7×7, 64, stride 2	7×7, 64, stride 2			
		3×3 max pool, stride 2	3×3 max pool, stride 2			
a 2	256 ~ 256	1×1,64	1×1,64			
02	250 × 250	3×3,64 ×3	3×3, 64 ×3			
		1×1, 256	1×1, 256			
		[1×1, 128]	[1×1, 128]			
c3	128×128	3×3, 128 ×4	3×3, 128 ×4			
		1×1, 512	1×1, 512			
	64×64	[1×1, 256]	[1×1, 256]			
c4		64×64	3×3, 256 ×6	3×3, 256 ×6		
		1×1, 1024	1×1, 1024			
		1×1,512	1×1, 512			
c5	32×32	3×3, 512 ×3	MHSA, 512 ×3			
		1×1, 2048	1×1, 2048			
# params.		25.5×10^{6}	20.8 ×10 ⁶			
N	/I.Adds	85.4 $\times 10^{9}$	102.98 ×10 ⁹			
TPU steptime		786.5 ms	1032.66 ms			

By just replacing the spatial convolutions with global self-attention in the final three bottleneck blocks of a ResNet and no other changes.

$[Pool, Pool, Pool, Pool] \rightarrow [Pool, Pool, Pool, Attention]$	14.0	1.9	78.3
$[Pool, Pool, Pool, Pool] \rightarrow [Pool, Pool, Attention, Attention]$	16.5	2.5	81.0

Srinivas, Aravind, et al. "Bottleneck transformers for visual recognition." CVPR 2021.

1.Introduction – PoolFormer, CVPR 2022 (Oral)

MetaFormer Is Actually What You Need for Vision

Weihao Yu^{1,2*} Mi Luo¹ Pan Zhou¹ Chenyang Si¹ Yichen Zhou^{1,2} Xinchao Wang² Jiashi Feng¹ Shuicheng Yan¹ ¹Sea AI Lab ²National University of Singapore

weihaoyu6@gmail.com {luomi,zhoupan,sicy,zhouyc,fengjs,yansc}@sea.com xinchao@nus.edu.sg Code: https://github.com/sail-sg/poolformer

Srinivas, Aravind, et al. "Bottleneck transformers for visual recognition." CVPR 2021.

2.Motivation - Token Mixer is all you need?

What is the success of Transformers? Our answer is the general architecture MetaFormer.

Transformers have shown great potential in computer vision tasks. A common belief is their attentionbased token mixer module contributes most to their competence.

Based on this observation, we hypothesize that the general architecture of the Transformers, instead of the specific token mixer module, is more essential to the model's performance.

"MetaFormer", a general architecture abstracted from Transformers without specifying the token mixer.

2. Motivation - Token Mixer is all you need?

GFNet(NeurIPS 2021), MLP Mixer(NeurIPS 2021), ShiftViT(AAAI2022), DynaMixer(ICML 2022)

3.Method - PoolFormer

3.Method - Configurations of different PoolFormer models.

Stage #Tokens		Lavar Sa	PoolFormer					
		Layer Sp	S12	S24	S 36	M36	M48	
		Patch	Patch Size	7×7 , stride 4				
		Embedding	Embed. Dim.		64		96	
1	$\frac{H}{4} \times \frac{W}{4}$	Doo1Formar	Pooling Size		3 ×	3, str	ide 1	
		Ploak	MLP Ratio			4		
		DIOCK	# Block	2	4	6	6	8
		Patch	Patch Size		3 ×	3, str	ide 2	
		Embedding	Embed. Dim.		128		19	92
2	$\frac{H}{8} \times \frac{W}{8}$	Doo1Formar	Pooling Size		3 ×	3, str	ide 1	
		PoolFormer D1= -1-	MLP Ratio	4				
		DIOCK	# Block	2	4	6	6	8
		Patch	Patch Size	3×3 , stride 2				
		Embedding	Embed. Dim.	320 384				84
3	$\frac{H}{16} \times \frac{W}{16}$	PoolFormar	Pooling Size	3×3 , stride 1				
		PoolFormer	MLP Ratio	4				
		DIOCK	# Block	6	12	18	18	24
		Patch	Patch Size		$3 \times$	3, str	ide 2	
		Embedding	Embed. Dim.		512	70	768	
4	$\frac{H}{32} \times \frac{W}{32}$	PoolFormer	Pooling Size		3×3 , stride 1			
		Block	MLP Ratio			4		
		DIOCK	# Block	2	4	6	6	8
Parameters (M)				11.9	21.4	30.8	56.1	73.4
MACs (G)		1.8	3.4	5.0	8.8	11.6		

There are two groups of embedding size 1) small-sized models with embedding dimensions of 64, 128, 320, and 512 responding to the four stages

2) medium-sized models with embedding dimensions 96, 192, 384, and 768.

4.Experiments – ImageNet-1K

General Arch.	Token Mixer	Outcome Model	Image Size	Params (M)	MACs (G)	Top-1 (%)
		RSB-ResNet-18 [24, 59]	224	12	1.8	70.6
Convolutional		VRSB-ResNet-34 [24, 59]	224	22	3.7	75.5
Neural Netowrks		RSB-ResNet-50 [24, 59]	224	26	4.1	79.8
		RSB-ResNet-101 [24, 59]	224	45	7.9	81.3
		VRSB-ResNet-152 [24, 59]	224	60	11.6	81.8
		▲ ViT-B/16* [17]	224	86	17.6	79.7
		▲ ViT-L/16* [17]	224	307	63.6	76.1
		▲ DeiT-S [53]	224	22	4.6	79.8
	Attention	▲ DeiT-B [53]	224	86	17.5	81.8
	Auction	A PVT-Tiny [57]	224	13	1.9	75.1
		A PVT-Small [57]	224	25	3.8	79.8
		PVT-Medium [57]	224	44	6.7	81.2
		PVT-Large [57]	224	61	9.8	81.7
	Spatial MLP	MLP-Mixer-B/16 [51]	224	59	12.7	76.4
		ResMLP-S12 [52]	224	15	3.0	76.6
MataFormar		ResMLP-S24 [52]	224	30	6.0	79.4
Metaronnei		ResMLP-B24 [52]	224	116	23.0	81.0
		Swin-Mixer-T/D24 [36]	256	20	4.0	79.4
		Swin-Mixer-T/D6 [36]	256	23	4.0	79.7
		Swin-Mixer-B/D24 [36]	224	61	10.4	81.3
		▶ gMLP-S [35]	224	20	4.5	79.6
		▶ gMLP-B [35]	224	73	15.8	81.6
		PoolFormer-S12	224	12	1.8	77.2
		PoolFormer-S24	224	21	3.4	80.3
	Pooling	PoolFormer-S36	224	31	5.0	81.4
		PoolFormer-M36	224	56	8.8	82.1
		PoolFormer-M48	224	73	11.6	82.5

All these models are only trained on the ImageNet-

1K training set and the accuracy on the validation set is reported.

Surprisingly, despite the simple pooling token mixer,

PoolFormers can still achieve highly competitive performance compared with CNNs and other MetaFormer.

PoolFormers can still achieve highly competitive performance compared with CNNs and other MetaFormer like models.,

4.Experiments – Grad-CAM

Grad-CAM activation maps of the models trained on ImageNet-1K. The visualized images are from validation set.

59] DeiT-small [53]

ResMLP-S24 [52]

PoolFormer-S24

4.Experiments -	Ablation	Study
-----------------	----------	-------

Ablation	Variant					F	Params (M)	MACs (G)	Top-1 (%)		
Baseline	None (Poo	lFormer-S12)					11.9	1.8	77.2		
	Pooling \rightarrow Identity mapping					-	11.9	1.8	74.3		
	Pooling \rightarrow	Global random m	natrix* (ext	ra 21M f	rozen parame	ters)	11.9	3.3	75.8		
Tokon miyors	Pooling \rightarrow	Depthwise Convo	olution [9,	38]			11.9	1.8	78.1		
TOKEII IIIAEIS	Pooling siz	the $3 \rightarrow 5$					11.9	1.8	77.2		
	Pooling siz	the $3 \rightarrow 7$					11.9	1.8	77.1		
	Pooling siz	$xe 3 \rightarrow 9$					11.9	1.8	76.8		
	Modified L	ayer Normalizatio	$\mathrm{on}^{\dagger} \rightarrow \mathrm{Lay}$	er Norma	alization [1]		11.9	1.8	76.5		
Normalization	Modified Layer Normalization [†] \rightarrow Batch Normalization [28]						11.9	1.8	76.4		
	Modified L	Modified Layer Normalization ^{\dagger} \rightarrow None					11.9	1.8	46.1		
Activation	$GELU [25] \rightarrow ReLU [41]$						11.9	1.8	76.4	2048-d out	2048-d out
Activation	$GELU \rightarrow SiLU [18]$						11.9	1.8	77.2	┌──→ ♥	↓
Othen common on to	Residual connection $[25] \rightarrow None$						11.9	1.8	0.1	512, 1x1, 2048	512, 1x1, 2048
Other components	Channel M	$LP \rightarrow None$					2.5	0.2	5.7		
	[Pool, Pool	$I, Pool, Pool] \rightarrow [I$	Pool, Pool,	Pool, At	ttention]		14.0	1.9	78.3	512, 3x3, 512	512, MHSA, 512
Hybrid Stores	[Pool, Pool	$I, \underline{Pool}, \underline{Pool} \longrightarrow []$	Pool, Pool,	<u>Attentio</u>	n, Attention]		16.5	2.5	81.0	2048, 1x1, 512	2048, 1x1, 512
Hybrid Stages	[Pool, Pool	$I, Pool, Pool] \to [I$	Pool, Pool,	Pool, Sp	oatialFC]		11.9	1.8	77.5		
	[Pool, Pool	$I, Pool, Pool] \rightarrow [I$	Pool, Pool,	SpatialF	C, SpatialFC		12.2	1.9	77.9	2048-d in	2048-d in
	1					1				ResNet Bottleneck	Bottleneck Transformer
# Epochs		300 (default)	400	500	1000	1500	2000	2500	3000		
PoolForm	ner-S12	77.2	77.5	77.9	78.4	78.6	78.8	78.8	78.8	l	

Table 7. Performance of PoolFormer trained for different numbers of epochs.

We observe that PoolFormer obtains saturated after around 2000 epochs with a top-1 accuracy improvement of 1.8%.

5.Conclusion and future work

We deliberately specify token mixer as extremely simple pooling for MetaFormer.

It is found that the derived PoolFormer model can achieve competitive performance on different vision tasks, which well supports that "MetaFormer is actually what you need for vision".

We will further evaluate PoolFormer under more different learning settings, such as **self-supervised learning and transfer learning.** Moreover, it is interesting to see whether PoolFormer still works on NLP tasks

We hope that this work can inspire more future research devoted to improving the fundamental architecture MetaFormer instead of paying too much attention to the token mixer modules.

The PoolFormer can readily serve as a good starting baseline for future **MetaFormer architecture design**

5.MetaFormer Baselines for Vision (Arxiv – 2022.12.22)

Overall frameworks of IdentityFormer, RandFormer, ConvFormer and CAFormer.

1	Variant	Top-1 (%)						
→ +	variant	ConvFormer-S18	CAFormer-S18					
Channel	Baseline	83.0	83.6					
MLP	StarReLU \rightarrow ReLU [49]	82.1 (-0.9)	82.9 (-0.7)					
Norm	StarReLU \rightarrow Squared ReLU [63]	82.6 (-0.4)	83.4 (-0.2)					
	StarReLU \rightarrow GELU [25]	82.7 (-0.3)	83.4 (-0.2)					
Random Mixing Nom (f) RandFormer	$StarReLU(x) = s \cdot (x)$ $StarReLU(x) = \frac{(ReLU(x))^2 - E(x)}{\sqrt{Var((ReLU))^2}}$	$\frac{\operatorname{ReLU}(x)}{\operatorname{I}(x)^{2}} = \frac{(x)^{2}}{(x)^{2}}$	$b^{2} + b,$ $\frac{\text{ReLU}(x))^{2} - 0.5}{\sqrt{1.25}}$					
block	$\approx 0.8944 \cdot (\text{ReLU}(x))^2 - 0.4472.$							
Channel MLP Nom	$X = \text{InputEmbe}$ $X' = X + \text{TokenMix}$ $X'' = X' + \sigma \text{ (Norms)}$	dding(I). ker (Norm ₁ (X ₂ (X')W ₁)W ₂ ,	T)),					
Attention	IdentityMapping $(X) = X$ RandomMixing $(X) = X$ Convolutions $(X) = Conv_{pw2}(G)$	X. $XW_R,$ Conv _{dw} (σ (Con	$\operatorname{nv}_{\operatorname{pw1}}(X)))),$					
(h) Transformer block								

Yu, Weihao, et al. "Metaformer baselines for vision." arXiv 2022.

5.MetaFormer Baselines for Vision (Arxiv – 2022.12.22)

88

78

52

75

69

87

56

15.4

15.0

10.2

15.7

11.7

14.0

13.2

83.5

84.2

84.4

84.1

84.5

84.8

85.2

Yu, Weihao, et al. "Metaformer baselines for vision." arXiv 2022.

5.RIFormer - Removing Token Mixer (CVPR 2023)

(a) Latency analysis of ViT-B

(b) Remove token mixer with heavy latency

RepIdentityFormer base on the re-parameterizing idea, to study the token mixer free model architecture.

(a) RepIdentityFormer Training

(b) RepIdentityFormer Inference

Figure 2. Structural re-parameterization of a RIFormer block.

Motivated by their considerable latency cost. We observe that appropriate optimization strategy can effectively help a **token mixer-free model** learn useful knowledge from another model.

PoolFormer-S12 [52]	224	12	1.8	4160.18	77.2
PoolFormer-S24 [52]	224	21	3.4	2140.20	80.3
PoolFormer-S36 [52]	224	31	5.0	1440.37	81.4
PoolFormer-M36 [52]	224	56	8.8	1009.45	82.1
PoolFormer-M48 [52]	224	73	11.6	761.93	82.5
★ RIFormer-S12 [◆]	224	12	1.8	4899.80 (†17.8%)	76.9
★ RIFormer-S24 [◇]	224	21	3.4	2530.48 (†18.2%)	80.3
★ RIFormer-S36 [◇]	224	31	5.0	1699.94 (†18.0%)	81.3
★ RIFormer-M36 [◇]	224	56	8.8	1185.33 (†17.4%)	82.6
★ RIFormer-M48 [◇]	224	73	11.6	897.05 (†17.7%)	82.8

Wang, Jiahao, et al. "RIFormer: Keep Your Vision Backbone Effective While Removing Token Mixer." CVPR 2023.

Thanks Any Questions?

You can send mail to Susang Kim(<u>healess1@gmail.com</u>)