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1.Introduction - Fourier Transform MLCF

Images are discrete signals, not continuous. And it is a signal defined in a finite interval.

Time AW Frequency

High Frequency
/\/\/\/\/\/\/ DFT (Discrete Fourier Tansform)
/\MLMMMEFT (Fast Fourier TranSform)

(@) f(xy) (b) l9g(|F(uv)|)

” https://dark tistory. /171
F(w) = f f(x) exp(—i2nwx) dx ps://darkpgmr.tistory.com
= High Frequency

(cYlog(|F(u-W/2,v-H/2)|)

Low Frequency
Local Information Global Information
The Fourier Transform converts the image from the spatial domain (i.e., the

image's pixel values) to the frequency domain (i.e., a representation of the
image's frequencies).

In image processing, the frequency domain is a way to represent an image as
a sum of sine waves of different frequencies. The frequency domain is often
| 1 used for analyzing and processing images because it allows us to better
| | '3;4_' fr .f'. understand the image's underlying structure and content.
. '/ ‘M' R https://sonsnotation.blogspot.com/2020/12/4-image-filtering.html

Low frequency
component component



https://darkpgmr.tistory.com/171
https://sonsnotation.blogspot.com/2020/12/4-image-filtering.html

1.Introduction - Convolution vs. Transformer

MLCF

It is difficult for ConvNets to capture long-term dependencies, while self-attention layers are global.

Convolution units (xM)

(a)

Local receptive field

MLP

Head — (Class

|__ Global information
passed to next layer

MLP

Clas
Head Bt

Flattening
patches and positional embedding  Attention units (xN)

S Tuli et al., “Are Convolutional Neural Networks or Transformers more like human vision?,” CogSci, 2021.

Convolution is efficient in memory and
compute.

Local connectivity can lead to loss of
global context.

Bad at long sequences(Need to stack
many conv layers for outputs to “see”
the whole sequence, Static weight).
High Frequency details (Texture biased)

Transformers are flexible and attend to
information at various distances away
from Patch.

Good at long sequences

- output sees “all” inputs.

Dynamic w.r.t input

- output “sees” inputs adaptively.

Very memory-intensive

Low Frequency global information
(Shape Biased)
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2.Motivation - Inception Transformer
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Figure 1: (a) Fourier spectrum of ViT [!%] and iFormer. (b) Relative log amplitudes of Fourier
transformed feature maps. (c¢) Performance of models on ImageNet-1K validation set. (a) and

(b) show that iFormer captures more high-frequency signals.

Effectively learns comprehensive features with both high- and low-frequency information in visual data.
capturing both high and low frequencies

ViT mainly including global shapes and structures of a scene or object, but are not very powerful for
learning high-frequencies,mainly including local edges and textures.



3.Related Works - Inception(Going Deeper with Convolutions) (CVPR 2015) MLCF

Filter cmc,;g?\ranon
concatenation
3x3 convolutions 5x5 convolutions 1x1 convolutions
1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling T ) 7 ¥
1 1x1 convolutions 1x1 convolutions 3x3 max pooling
& T ..
Previous layer Previous layer
(a]) Inception module, naive version (b) Inception module with dimension reductions
Team Year | Place | Error (top-5) | Uses external data '
SuperVision || 2012 | 1st 16.4% no
SuperVision | 2012 | Ist 15.3% Imagenet 22k AlexNet
Clarifai 2013 | 1st 11.7% no
Clarifai 2013 | 1st 11.2% Imagenet 22k
MSRA 2014 | 3rd | 7.35% no ) i
VGG 2014 | 2nd | 7.32% 10 2015 ReNet @ Sberia hsky o Bkimodes
GooglLeNet | 2014 | Ist 6.67% no 2016 GoogleNet v4 necessary to distinguish between fine-grained

2017 SENet visual categories like those in ImageNet



3.Related Works - Global Filter Networks for Image Classification (NeurlPS 2021) MLCF

C'i“ [ —]w X = rfft2(x, dim=(1, 2))
-Linear MLP X_tilde — X * K

Nx [ Global Average Pooling ] [ Layer:\lorm ] = irfft2(x—tilde’ dim:(l’ 2))
; ] FFN A

% ]s X = Fla] € CHXWxD,
Feed Forward Network (FFN)

[ 2D IFFT ]

X=KoX, =F X]

v N * N-1 N—-1
L] — : ,—j(2n/N)kn ._ ; rkn
Eb [b Eb [b [:b Eb [b Eb Eb frequency domain learnable ‘X [L] Z . [”] - ) Z & [”] I‘ N
features global filters n=0 n=0

Patch Embeddlng [ 2D EET ]

f ' j(2w /N )L71
[ Layer Norm ] A \ Z \

i Global Filter Layer )

Global Filter Layer

,
GFNet replaces the self-attention layer in vision transformers with three key operatlons. a

2D discrete Fourier transform, an element-wise multiplication between frequency-domain
features and learnable global filters, and a 2D inverse Fourier transform.

Complexity (FLOPs) # Parameters
Depthwise Convolution O(k>HW D) k*D
Self-Attention O(HWD?* + H*W?D) 4D?
Spatial MLP O(H2W?2D) H2W?

Global Filter O (HW DJlog,(HW)] + HWD) HWD




3.Related Works - FNet:Mixing Tokens with Fourier Transforms(NAACL 2022) MLCF

Attention may not be the principal component driving the performance of Transformers. O(A‘T log ,)
FNet, that uses the Fourier Transform as a mixing mechanism. ’
N-1
O“;p“t discrete Fourier Transform X, = Z z e W 0<k<N-—1.
[ Output Projection ] ; y v nfo
i W, is a Vandermonde matrix for the roots of unity
[ Dense ] up to a normalization factor: 1z xj Ty
¥ 1 z 2t 2l
/ l 27rz k 1 2 n
_’[ Add & Normalize ] Wk = ( " /V N) = V(zo,21,"**,2Zm) = 2 2 3
| .
[ Feed Forward } ,, -
1 2 zm Tm
Nx ! Mixing layer ops | Model params
—-[ Add & Normalize ] Model (per layer) Base Large
- BERT 2n%dy, + 4nd? [112M 339M
[ EonEE ] Linear n’d, +nd; | 94M  269M
~ ENet(mat) | n2d,+nd: |83M 238M
( Embeddings ) FNet (FFT)| ndjlog(n)+ | 83M 238M
— ndp, log(dp)
\[ Word ]+[ Position ]+[ L ], Random n?dy, + nds 83M 238M
FF-only 0 83M  238M

Input




3.Related Works - An Image Patch is a Wave: Phase-Aware Vision MLP (CVPR 2022) MLCF

\ jrmmse s M : 1 10
: Token Mixing ‘ ’ 5 - T
i N, = PATM A X 1.0
! Norm b i
' E X PATM i (a) The general case
| I ___ .
y o \\\ 1 10
L g 05
'//‘i . /\/ Real Part 3 o
— X
! FC . N ” | FC Q . )
-/ . Y ‘ = i
B ~ O% : 7
“ . /\} ‘ Imaginary Part 6 : /
"\E{lput Amplitude Phase Outpuf/," ¥ ;
----------------------- P-ha;e-;s\"\aléiﬂ;ké;l-l;l;\u;g'V—-"“' (c¢) Two waves have the opposite pl?'ase
amplitude is a real-value feature representing each token. g — g, + atan2(|z;| ® sin(6; — 6;).
20| = V/]2:]2 + |25]2 + 2|2i] © |2;] © cos(8; — 65), |zi| + |2;| © cos(8; — 65)),

Wave-MLP architecture for vision tasks, which takes each token as a wave with both amplitude

and phase information. Amplitude is the original real-value feature and the phase modulates relationship
between the varying tokens and fixed weights in MLP. With the dynamically produced phase, the tokens are
aggregated according to their varying contents from different input images.



3.Related Works - Hybrid Architecture / BoTNet (CVPR 2021) MLC

F

z = stage| output ResNet-50 BoTNet-50
Backbone for Representation Learning cl [512 x 512 7x7, 64, stride 2 7x7, 64, stride 2
33 max pool, stride 2 33 max pool, stride 2
! ! c2 256 x 256 11,64 I3l 64
s s 3x3,64 | x3 3x3,64 | x3
Convolution Attention I1x1.256 1x1.256
| [ 1x1,128 ] [ 1x1,128 ]
l l l £ l c3 128 x 128 3x3,128 | x4 3x3,128 | x4
1x1,512 1x1,512
CNN CNN + Transformer Transformer SENet - =< = =
1x1,256 1x1,256
l — L l NLNet c4 | 64 x 64 3x3,256 | x6 3x3,256 | x6
s # L tethoe; P — I z 1x1,1024 L1, 1024
AlexNet/ResNet/DenseNet , BoTNetACeiT VIT/PVT/TNT/Swin GCNet L J — = =
|_ —_ 1x1,512 1x1,512 |
5| 32x32 3x3,51 3 MHSA, 51 3
2048-d out 2048-d out c ) sl e | ol Rl
4 ; ; ; 1x1,2048 11,2048
i &4 L By just replacing the spatial . . — e
i i 4 convolutions with global # params. i o
A g ) M.Adds 85.4x10° 102.98x10°
self-attention in the final blocks of a TPU steptime 7965 032,66

512, 3x3, 512
2048, 1x1, 512

2048-d in

ResNet Bottleneck

Srinivas, Aravind, et al.

ResNet and no other changes.

| Stage;
DPE
N

DWConv

2048-d in

Bottleneck Transformer

Uniformer (CNN+ViT) (ICLR 2022)

"Bottleneck transformers for visual recognition." CVPR 2021.



4 Method - The overall architecture of iFormer MLCF

Input Stage1 Stage2 Stage3 Stage4

3XHxW

CIXZXT CZX§X§ C3 {:4

*16"16 a7 a2

Fusion

Upsample

iFormer
Blocks

iFormer
Blocks

iFormer
Blocks

iFormer
Blocks

Suipaquwia yaed
Suipaquia yaed
Suipaquwia yojed
Suipaquwa yaed

[ tinear ] [ pwconv ] [ Attention ]
J (

Inception I L I
Mixer [ Linear ] [ AvePool

For each block, yellow and green indicate low- and high-frequency 1

high-frequency max-pooling operation and convolution ; ’
low-frequency mixer is implemented by a vanilla self-attention in ViTs.

Technically, given the input feature map X € RN*C it is factor-
ized X into X5 € RV*XCr and X; € RVNXC along the channel
dimension, where C}, + C; = C. Then, X}, and X are assigned to
high-frequency mixer and low-frequency mixer respectively.



Inception mixer.

High-frequency mixer :

Low-frequency mixer

Low-high-frequency mixers

Frequency ramp structure

(_,'v
X5 € RN

MLCF

Y 1 = FC (MaxPool (X p1))

X € RV*F
Y o = DwConv (FC (X 12))

Y = Upsample (MSA (AvePooling (X7)))

the kernel size and stride for the pooling and upsample layers
are set to 2 only at the first two stages.(reduces the
computational overhead)

Y. = Concat (Y, Yr1,Yr2) Y =FC(Y.+ DwConv (Y,))

Y = X + ITM (LN (X))
H =Y +FFN(LN(Y))

define a channel ratio to better balance the
high-frequency and low frequency components,



Frequency ramp structure : Configurations of iFormers

Like humans, by capturing the details in high frequency components, lower layers can capture visual
elementary features, and also gradually gather local information to achieve a global understanding of the input.

Stage |  Layer | iFormer-S | iFormer-B | iFormer-L
Patch 3 x 3, stride 2,48 3 x 3,stride 2,48 3 x 3,stride 2,48
Embedding 3 x 3, stride 2, 96 3 x 3, stride 2, 96 3 x 3, stride 2, 96
1 Former |+ |Cn/h=2/3T [ TCw/h=2/3] [ Cn/h=2/3] 1 !
Block || Ci/h=1/3] x3 Ci/h=1/3| x4 Ci/h=1/3| x4
& “T--1poolstride 21"~ “TTTTpoolstride2 [ C T T poorstride 27~~~
Patch . P 3 ; ;
: 2 x 2,stride 2,192 2 x 2, stride 2, 192 2 x 2, stride 2,192
Embedding
2 iFormer :{ Cn/h=1/2 ‘n/h=1/2 Ch/h=1/2 !
Block | ~--fCGuh=121x3 | ____|G/h=1/2]x6 ___| _ ____] Ci/h=1/2| x6_.
pool stride 2 pool stride 2 pool stride 2
Haien 2 x 2, stride 2, 320 2 x 2, stride 2, 384 2 x 2, stride 2, 448
Embedding | 7~ =" =" | oo o
3 Former :' Cp/h=3/10— 1/10 Cn/h=4/12 — 2/12 Cp/h=4/14 — 2/14 E
et C/h=7/105.9/10] x 9| _|Ci/h =8/12.=10/12] x 14 |_|C1/h =10/14.-.12/14] x 18
Block i " g
pool stride 1 pool stride 1 pool stride 1
Lach 2 x 2, stride 2, 384 2 x 2,stride 2,512 9 x 2, stride 2, 640
Embedding
4 — o TCw/h=1127 T Co/h=1/16T [ [Cu/h=1/20] K
Block ! Ci/h=11/12] x 3 Ci/h=15/16| x 6 Ci/h=19/20| x 8!
TToTpoolstride 1T T T T T T T T T poolstride T |77~~~ 7] TTTTTTpoorstride 1T T
#Param. (M) | 20 | 48 | 87
FLOPs (G) | 4.8 | 94 | 14.0

MLCF




Comparison of different types of models on ImageNet-1K

MLCF

The same data augmentations and
regularization methods in DeiT for fair
comparison.

iIFormer surpasses
both the SoTA ViTs and hybrid ViTs.

: #Param. FLOPs Input Size ImageNet
Model Size | Arch. Method M) G) Tl‘ui}n Test | Top-1 < Tap-5
CNN RSB-ResNet-50 [17, 6] 26 4.1 224 224 80.4 -
ConvNeXt-T [ 0] 28 4.5 224 224 82.1 -
Deit-S [2Y] 22 4.6 224 224 79.8 95.0
PVT-S [0] 25 3.8 224 224 79.8 <
§ ViT T2T-14 [38] 22 32 224 224 80.7 <
Tj = Swin-T [5] 29 4.5 224 224 81.3 95.5
2= Focal-T [63] 29 4.9 224 224 82.2 95.9
g "2' CSwin-T [64] 23 4.3 224 224 82.7 .
E CvT-13 [25] 20 4.5 224 224 81.6 -
- CoAtNet-0 [24] 25 4.2 224 224 81.6 2
Container [65] 22 8.1 224 224 82.7 z
Hybrid | ViTAE-S [2}] 24 5.6 224 224 82.0 95.9
VITAEvV2-S [66] 19 51 224 224 82.6 96.2
UniFormer-S [ 2] 22 3.6 224 224 82.9 -
iFormer-S 20 4.8 224 224 83.4 96.6
CNN RegNetY-16GF [29, 67] 84 16.0 224 224 82.9 -
. ConvNeXt-B [ 0] 89 154 224 224 83.8 -
- DeiT-B [ 9] 86 17.5 224 224 | 818 956
Zj g ViT Swin-B [ 7] 88 15.4 224 224 83.3 96.5
S Focal-B [67] 90 16.0 224 224 83.8 96.5
zf 2 CSwin-B [64] 78 15.0 224 224 84.2 -
= BoTNet-T7 [65] 79 19.3 256 256 84.2 -
Hybrid CoAtNet-3 [ 24] 168 34.7 224 224 84.5 -
? VIiTAEv2-B [66] 90 24.3 224 224 84.6 96.9
iFormer-L 87 14.0 224 224 84.8 97.0




Fine-tuning Results with larger resolution (384 x 384) MLCF

Miticd #Param. FLOPs ]nput Size ImageNet iFormer consistently outperforms the
(M) (G) Train  Test | Top-1 T .
counterparts by a significant margin across
' IW'I | different computation settings. These results
CSwin-T1384 [64] 23 140 224 384 84.3 clearly demonstrate the advantages of iFormer
CvT-131384 [25] 20 163 224 384 83.0 on image classifications.
CoAtNet-01384 [ 4] 20 13.4 224 384 83.9
ViTAEv2-S1384 [66] 19 17.8 224 384 83.8
iFormer-S1384 20 16.1 224 384 84.6
[72]
[77]
ViTAEv2-48M 1384 [66] 49 41.1 224 384 84.7
CSwin-S1384 [64] 35 220 224 384 85.0
CoAtNet-11384 [ 4] 42 274 224 384 85.1
iFormer-B1384 48 305 224 384 85.7
[77]
Swin-B1384 [5] 88 470 224 384 84.2
CSwin-B1384 [64] 78 470 224 384 85.4
ViTAEV2-B1384 [66] 90 744 224 384 85.3
CoAtNet-21384 [ 24] 75 49.8 224 384 85.7
iFormer-L.1384 87 453 224 384 85.8




Results on Object detection and Instance segmentation MLCF

Methiod #Param. | FLOPs e , l\/Iasl\’bR-CI\‘JNnl1 X . iFormer as the backbone
(M) (G) | AP® AP} AP, | AP™ APg APR in Mask R-CNN.

ResNet50 [17] 44 260 | 380 586 414 | 344 551 367

PVTS [6] 44 245 | 404 629 438 | 378 601 403 The FLOPs are

TwinsP-S [75] 44 245 | 429 658  47.1 | 400 627  42.9 .

Twins-S [75] 44 28 | 434 660 473 | 403 632 434  Mmeasuredatresolution

Swin-T [5] 48 264 | 422 646 462 | 391  6l6 420  800x1280

ViL-S [76] 45 218 | 449 671 493 | 410 642  44.1

Focal-T [63] 49 201 | 448 677 492 | 410 647 442

UniFormer-Sp14 [22] 41 260 | 456 68.1 497 | 41.6 648 450

iFormer-S 40 263 462 685 506 419 653  45.0

ResNet101 [47] 63 336 | 404 61.1 442 | 364 517 388

X101-32 63 340 | 419 625 459 | 375 594 402

PVT-M [6] 64 302 | 420 644 456 | 390 616 421

TwinsP-B [73] 64 302 | 446 667 489 | 409 638  44.2

Twins-B [75] 76 340 | 452 676 493 | 415 645 448

Swin-S [7] 69 354 | 448 666 489 | 409 634 442

Focal-S [63] 71 401 | 474 698 519 | 428 666  46.1

CSWin-S [64] 54 342 | 479 701 526 | 432 671 462

UniFormer-B [22] 69 399 | 474 697 521 | 431 660 465

iFormer-B 67 351 48.3 70.3 53.2 43.4 67.2 46.7




Semantic Segmentation MLCF

Matkica #Param. | FLOPs | mloU evaluate the generality of iFormer through

(M) (G) (%) benchmark on semantic segmentation, i.e.,
ResNet50 [47] 29 183 | 367 ADE20K.
PVT-S [6] 28 161 39.8 , .
TwinsP-S [75] 8 162 44.3 The dataset contains 20K training
Twins-S [75] 78 144 43.2 images and 2K validation images. We adopt
Swin-T [3] 79 182 41.5 iFormer pretrained on ImageNet as the backbone
UniFormer-Spss [22] 25 199 46.2 of the Semantic FPN framework. Following
UniFormer-S [22] 25 247 46.6 PVT and UniFormer, we use AdamW with an initial

[22] learning rate of 2x10”-4

iFormer-S 24 181 48.6 with cosine learning rate schedule to train 80k

iterations. All experiments are implemented on
Semantic segmentation with semantic FPN on ADE20K. mmsegmentation codebase
FLOPs are measured at resolution 512x2048.



Fourier spectrum of 6-th, 12-th and 18-th layers for the iFormer-S. MLCF

(a) 6-th layer (b) 12-th layer (c) 18-th layer

o8| Joje}e

MaxPool DwConv Attention MaxPool DwConv Attention

Fourier spectrum of iFormer-S for the
MaxPool, DwConv and Attention

branches in the Inception mixer. We can
observe that attention mixer tends to
reduce high frequencies,

while MaxPool and DwConv enhance them.

(a) 4-th layer (b) 8-th layer

Figure 4: (a) (b) Fourier spectrum of iFormer-S for the MaxPool, DwConv and Attention
branches in the Inception mixer. We can observe that attention mixer tends to reduce high-
frequencies, while MaxPool and DwConv enhance them.

Effect of kernel type on frequency



Ablation study MLCF

Table 7: Ablation study of down-up structure for Self-attention and kernel size of convolution.

adopting the down- and up-sample structure,

| Down-and Up | #Param. (M) iFormer-S gets a similar accuracy (83.4%) but

FLOPs (G) | Top-1(%)

F -S
S il (. X_ 1 20_ ____710__|_836__ has much less FLOPs (4.8 G).
I v 20 4.8 83.4 1
- . “  the self-attention has learned that is learnt by
| Kemel.Size | Top-1(%) large-kernel DWConv. Besides, the smaller
Former-S . . .
[ Gy 83.2 kernel is more conducive and effective for
T 3x3 T 834 | capturing high-frequency.

Table 5: Ablation study of Inception mixer and frequency ramp structure on ImageNet-1K. All the
models are trained for 100 epochs.

| Attention MaxPool DwConv | #Param. (M) FLOPs (G) | Top-1(%) 2
. Attention MaxPool DwConv Top-1(%)

Mixer v X X 21 5.2 80.8

v v X 20 49 81.0 v il A 212

v v v 20 48 81.2 J X v 81.4
Ci/C },Cn/C t 19 4.7 80.5

Structure G0 —GylC 19 47 80.7 v ad o 815
C/C1,Cu/C | 20 48 81.2

Inception token mixer. The Inception mixer is proposed to augment the perception capability
of ViTs in the frequency spectrum. To evaluate the effects of the components in the Inception

mixer, we increasingly remove each branch from the full model




Grad-CAM of Swin-T and iFormer-S trained on ImageNet.

(a) Input (b) Swin-T (c) iIFormer-S

Figure 5: Grad-CAM [50] activation maps of Swin-T [5] and iFormer-S trained on ImageNet.

'
l- ', .

chihuahua

Swin-T iFormer-S

Input Swin-T iFormer-S
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Conclusions

iFormer adopts a channel splitting mechanism to simply and efficiently couple convolution, maxpooling
and self-attention, giving more concentrations on high frequencies and expanding the perception
capability of the Transformer in the frequency spectrum

iFormer outperforms representative vision Transformers on image classification, object detection and
semantic segmentation, demonstrating the great potential of our iFormer to serve as a general-purpose
backbone for computer vision.

we further design a frequency ramp structure, enabling effective trade-off between high-frequency and
low-frequency components across all layers

Limitation.
It is not trained on large scale datasets, e.g., ImageNet-21K
A straightforward solution would be to use neural architecture search.



Openreview (Neur'PS 2022 Ora') https://openreview.net/forum?id=qf12cWVSksq MLCF

This paper proposes a novel multi-branch style architecture for vision tasks, motivated by a frequency perspective of
deep network behaviors.

Official Blind Review 1 (Rating: 7: Accept)

Q: The design of a frequency ramp structure that uses a channel ratio to balance the high- and low-frequency seems
straightforward. | wonder other designs for frequency information balancing and how they perform. (from linear scaling)
A: cosine scaling / NAS

We then consider using a regularization method to help improve the ability of attention to learn high-frequency information.

Official Blind Review #2 (Rating: 8: Strong Accept)

Q: the multi-branched network seems to have better generalization and optimization properties compared with the
single-branched counter parts Lack of discussion with previous multi-branched network structure.

A: this work aims to disclose the problem of vanilla ViTs, while ResNeXt/Inception aims to improve the efficiency of CNNs.

Official Blind Review #3 (8: Strong Accept)
Q: How does the feature fusion module compares to direct concatenation in performance?
A: Our feature fusion module for iFormer-S achieves 83.4%, while the result of direct concatenation is 83.0%

Official Blind Review #4 (Rating: 7: Accept - increase ratings)

Q: the fair settings instead of only on an intermediate setting.

A: this study will provide valuable insights for the community to design efficient and effective Transformer architectures.
Q: we can apply large kernel DWConv to achieve better performance than the naive MaxPool operation.

A: the self-attention has learned the information that is learnt by large-kernel DWConv. Besides, the smaller kernel is more
conducive and effective for capturing high-frequency information.


https://openreview.net/forum?id=qf12cWVSksq
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Thanks

Any Questions?

You can send mail to
Susang Kim(healess1@amail.com)
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