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1.Introduction - FAS Application PP, S .
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Face anti-spoofing (FAS) plays a vital role in securing
face recognition systems from presentation attacks.

Face Anti-spoofing in the wild

4th Chalearn Face Anti-spoofing Workshop and Challenge@CVPR2023



https://sites.google.com/view/face-anti-spoofing-challenge/welcome/challengecvpr2023
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Yu, Zitong, et al. "Deep learning for face anti-spoofing: A survey." TPAMI, 2022.



1.Introduction — Deep learning based FAS methods
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Fig. 1. The increasing research interest in the FAS field, obtained
through Google scholar search with key-words: allintitle: “face anti-
spoofing”, “face presentation attack detection”, and “face liveness
detection”.
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Fig. 6: Chronological overview of the milestone deep learning based FAS methods using commercial RGB camera.

Yu, Zitong, et al. "Deep learning for face anti-spoofing: A survey." TPAMI, 2022.



2.Related Works - Hybrid FAS vs Deep Learning(End to End)
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features from deep features. (c) Fused handcrafted and deep features.



2.Related Works - From Local Binary Pattern(LBP) to CDCN (CVPR 2020)
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2.Related Works - Adaptive vision transformers (ViT) for FAS (ECCV 2022)
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Improve performance by leveraging diverse modalities
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HUANG, Hsin-Ping, et al. “Adaptive transformers for robust few-shot cross-domain face anti-spoofing.” ECCV 2022.

Tseng, Hung-Yu, et al.

"Cross-domain few-shot classification via learned feature-wise transformation.“ ICLR 2020.



2.Related Works — Vision Language Pre-training (CLIP)
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA
Image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet.
Contrastive learning and Self-supervised learning.

Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML 2021.



3.Methods — Multimodal & Contrastive learning

FLIP: Cross-domain Face Anti-spoofing with Language Guidance
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Multimodal contrastive learning strategy to boost generalization with CLIP encoder.

Abstract

Face anti-spoofing (FAS) or presentation attack detection
is an essential component of face recognition systems de-
ployed in security-critical applications. Existing FAS meth-
ods have poor generalizability to unseen spoof types, cam-
era sensors, and environmental conditions. Recently, vi-
sion transformer (ViT) models have been shown to be ef-
fective for the FAS task due to their ability to capture long-
range dependencies among image patches. However, adap-
tive modules or auxiliary loss functions are often required
to adapt pre-trained ViT weights learned on large-scale
datasets such as ImageNet. In this work, we first show that
initializing ViTs with multimodal (e.g., CLIP) pre-trained
weights improves generalizability for the FAS task, which
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Figure 1. Area Under ROC Curve (AUC %) and Half Total Error
Rate (HTER %) comparison between our proposed method and
state-of-the-art (SOTA). Our method achieves the highest AUC (T)
performance with the lowest HTER (/) for cross-domain face anti-
spoofing on MCIO datasets, surpassing all the SOTA methods.



3.Method - Overview of the proposed FLIP framework

(a) FLIP-Vision (b) FLIP-Image-Text Similarity (c) FLIP-Multimodal-Contrastive-Learning
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3.Method - Image Encoder | mee |
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The final image representation x is obtained
by linearly projecting the class token Ck
E—19... K. from the last transformer block (Vx)
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3.Method - Text Encoder

Text
Encoder

¥

. 1,2 Q@ Qxd
Word embedding wo = (wp, wi, -+ wg'] € RO*%,

W = ﬁk(’tﬂk—l)

transformer block (L)

z = TextProj(w

Q
K

)

k=12, K.

# NLD

# LND

2z € R%t,

-> LND

-> NLD

The final text representation z is obtained
by projecting the text embeddings
corresponding to the last token of the last
transformer block (£x)

A Base size we use a 63M-parameter 12- layer
512-wide model with 8 attention heads. (GPT-2)

The transformer operates on a lower-cased Byte
Pair Encoding (BPE : subword tokenizer)
representation of the text with a 49,152 vocab size.



3.Method — Contrastive Loss (SImCLR)

Contrastive representation learning for images has found that contrastive objectives can learn better
representations than their equivalent predictive objective.
The InfoNCE (Nagative Constrastive) loss was adapted for contrastive (text, image) representation learning.

Givenaset X ={z1,...,znN}of N random samples containing one positive sample from p($f+k‘0f) and

N — 1 negative samples from the 'proposal’ distributionp($f+k). we optimize:
Maximize agreement

Zi - - ZJ
Az W C A
Ly = —Ex|log Jein ) g(-) TQ(')
ZIJE‘Y fk(:Em Cf) h; +— Representation — hj
Optimizing this loss will result in fk(a:Hk, Cf-) estimating the density ratio, which is: £+ 1)
TiglC
fe(@eir ) M
P(-‘l“t+k)

SImMCLR - two separate data augmentation operators are
sampled from the same family of augmentations (t ~ Tandt ~ T)

Oord, A. V. D., Li, Y., & Vinyals, O. Representation learning with contrastive predictive coding. arXiv preprint.
CHEN, Ting, et al. A simple framework for contrastive learning of visual representations. ICML 2020.



3.Method — FLIP Vision
Lcg = — Z t;log(p;), for n classes,

=1
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|
/ g,::z, \  Pre-trained CLIP model and use only its image encoder V and discard the text encoder L

Representations produced by CLIP have shown impressive out-of-the-box performance for
many downstream vision applications based on natural images such as classification,
object detection, and segmentation.




3.Method — FLIP IT(Image-Text Similarity)

FLIP-Image-Text similarity, we obtain the prediction with the help of language

supervision instead of using the MLP head.
Real / Spoof

z : text representation, x : image representation, 1 : temperature parameter

s} o) — exp(sim(@, z;)/ )

exp(sim(x, z,)/7) + exp(sim(x, z5)/7)’

Prompt No. Real Prompts Spoof Prompts
P1 This is an example of a real face | This is an example of a spoof face

o Text P2 This is a bonafide face This is an example of an attack face
. b P3 This is a real face This is not a real face
Encoder Encoder P4

This is how a real face looks like | This is how a spoof face looks like
P5 A photo of a real face A photo of a spoof face
P6 This is not a spoof face A printout shown to be a spoof face
“a photo of a Table 1. Natural language descriptions (context prompts) of the

spoof / real face ”

real and spoof classes used to guide the FLIP-IT model.

Aligning the image with a multitude of natural language class
descriptions enables the model to learn class specific clues.



3.Method - FLIP-MCL(Multimodal-Contrastive-Learning)
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4. Experiments - Datasets and DG Protocois-
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4. Experiments - Implementation Details

Protocol 1: The widely used cross-domain FAS benchmark datasets,
MSU-MFSD (M)[1], CASIA-MFSD (C)[2], Idiap Replay Attack ()[3], and OULU-NPU (O) [4].
OCI (source domains) — M (target domain)

Protocol 2 : The large-scale FAS datasets,
WMCA (W), CASIA-CeFA (C), and CASIA-SURF (S).
CS (source domains) — W (target domain)

Protocol 3 : The low-data regime as a single-source-to-single-target. (a total of 12 different scenarios.
cC-1C->MC-0I-C,I>- M| > OOM-C, M>>I, M-0,0-C,0—-1,0—->M

For all protocols, we incorporate CelebA-Spoof as supplementary training data to enhance the
diversity of training samples,

[1] Di Wen, et al. Face spoof detection with image distortion analysis. IEEE Transactions on Information Forensics and Security, 2015.

[2] Zhiwei Zhang, et al. A face antispoofing database with diverse attacks. IAPR International Conference on Biometrics (ICB), 2012.

[3] Ivana Chingovska, et al. On the effectiveness of local binary patterns in face antispoofing. (BIOSIG), 2012.

[4] Zinelabinde Boulkenafet, et al. Oulu-npu: A mobile face presentation attack database with real-world variations. IEEE International Conference on
Automatic Face & Gesture Recognition 2017.



4. Experiments - Implementation Details
Crop and resize the face images to 224 x 224 x 3 and split them into a patch size of 16 x 16.
Adam optimizer and set the initial learning rate to 10”6 and weight decay to 10"6

batch size of 3 in Protocol 1, Protocol 3.
batch size of 8 in Protocol 2.

FLIP-V uses a two-layer MLP head containing fully connected layers of dimensions 512 and 2.

Dimensionality of image representation is 768
Dimension of the shared vision-language embedding space is 512

train for 4000 iterations

FLIP-V update all the layers of the image encoder and MLP.

FLIP-IT update all the layers of the image and text encoders.

FLIP-MCL update all the layers of the image encoder, text encoder, and the non-linear projection network H.
H consists of 3 linear layers of dimensions 512, 4096, and 256, and the first two layers are followed by
BatchNorm and RelLU.



4. Experiments — Evaluation metric

Table 1. Comparison of existing face PAD databases. (* indicates the dataset only v
contains images. AS: Asian, A: Africa, U: Caucasian, [: Indian, E: East Asia, C: Centra
Asia.)

| — JDataset __ lYear|#Subject|#Num| Attack | Modality | Device |Eth11'1::ity|
Replay-Attack [9] ;'2012 50 1200 Print,Replay RGB RGB Camera -
\ (lAS_IAfAED_EIﬁ 2012 50 600 | Print,Cut,Replay RGB RGB Camera -
SDMAD [12] 2014 17 255 | 3D print mask | RGB/Depth |RGB Camera/Kinect -
MSU-MFSD [41] 2015 35 440 Print,Replay RGB Cellphone/Laptop - @
Replay-Mobile 111]]2016] 40 1030 | Print,Replay RGB Cellphone - Print attack, Replay/video attack ,3D mask attack
_Msspoof [10]__ 2016 21 4704° Print RGB/IR RGB/IR Camera - >
OULU-NPU [8] [2017| 55 5940 | Print,Replay RGB RGB Camera - o
i iyrianl : AS/A/| © 3
SiW [24] 2018| 165 4620 Print,Replay RGB RGB Camera U/1 3 §!
CASIA-SURF [45]]2019/ 1000 | 21000 Print,Cut RGB/Depth/IR| Intel Realsense E g; g bona fide
n l M
1500 | 18000 | Print, Replay - presentations
CeFA 2019 99 5346 | 3D print mask |RGB/Depth/IR| Intel Realsense A/E/C :
(Ours) ' 8 192 |3D silica gel mask |
Total: 1607 subjects, 23538 videos |
APCER — # of accepted attacks BPCER — # of rejected real attempts = T - s:)re
# of attacks # of real attempts classified as attacks | classified as bona fide

ACER(r) — APCER(D) ; BPCER(T) .

Attack Presentation Classification Error Rate (APCER)
Normal Presentation Classification Error Rate (NPCER)
Average Classification Error Rate (ACER)

LIU, Ajian, et al. Casia-surf cefa: A benchmark for multi-modal cross-ethnicity face anti-spoofing. WACV 2021.



4. Experiments - Cross-domain FAS Performance

Table 2. Evaluation of cross-domain performance in Protocol 1, between MSU-MFESD (M), CASIA-MFSD (C), Replay Attack (I) and
OULU-NPU (O). We run each experiment 5 times under different seeds and report the mean HTER, AUC, and TPR@FPR=1%.

OCI - M OMI — C OCM — 1 ICM — O Avg.
Method HTER AUC TPR@ HTER AUC IPR@ HTER AUC TPR@ HTER AUC IPR@ HTER
FPR=1% FPR=1% FPR=1% FPR=1%
MADDG (CVPR’ 19) [35] 17.69 88.06 - 2450 8451 I 22,19 84.99 - 27.98 80.02 - 23.09
MDDR (CVPR’ 20) [+4] 17.02  90.10 - 19.68 8743 I 20.87 86.72 - 25.02  81.47 - 20.64
NAS-FAS (TPAMI' 20) [53] 16.85 90.42 - 1521 92.64 I 11.63  96.98 = 13.16  94.18 - 14.21
REMeta (AAAL 20) [3Y] 13.89 93.98 - 20.27 88.16 I 17.30  90.48 - 1645 91.16 - 16.97
D?AM (AAAT 21) [6] 1270 95.66 - 2098 85.58 I 1543 91.22 - 15.27  90.87 - 16.09
DRDG (LICAT" 21) [25] 1243 9581 - 19.05 88.79 I 1556 91.79 - 15.63  91.75 - 15.66
O-shot  Self-DA (AAAT 21) [46] 1540 91.80 - 2450  84.40 I 15.60 90.10 - 23.10  84.30 - 19.65
ANRL (ACM MM 21) [27] 10.83 96.75 - 17.85 89.26 - 16.03 91.04 - 15.67 91.90 - 15.09
FGHV (AAAT 21) [20] 9.17  96.92 - 1247 9347 I 16.29  90.11 - 13.58 93.55 - 12.87
SSDG-R (CVPR’ 20) [1¥] 738 97.17 - 1044 9594 - 11.71  96.59 - 15.61 91.54 - 11.28
SSAN-R (CVPR’ 22) [-4¥] 6.67 98.75 - 10.00  96.67 I 8.88 96.79 = 13.72  93.63 - 9.80
PatchNet (CVPR’ 22) [+2] 7.10  98.46 - 11.33  94.58 I 13.40 95.67 - 11.82  95.07 - 10.90
GDA (ECCV’ 22) [67] 9.20 98.00 - 12.20  93.00 I 10.00  96.00 = 1440  92.60 - 11.45
0-shot DiVT-M (WACV" 23) [27] 286 99.14 - 8.67 96.62 I 371 99.29 - 13.06 94.04 - 7.07
’ VIiT (ECCV’ 22) [16] 158 99.68  96.67 5.70  98.91 88.57 9.25 97.15 51.54 747 9842 69.30 6.00
5-shot VIiT (ECCV’ 22) [16] 342 98.60  95.00 1.98  99.75 94.00 231 99.795 87.69 734 97.77 66.90 3.76
VITAF* (ECCV" 22) [16] 292 99.62  91.66 1.40  99.92 08.57 .64  99.64  91.53 5.39 98.67 76.05 3.31
FLIP-V 379 9931 87.99 1.27  99.75 05.85 4.71  98.80 75.84 4.15 9876 6647 3.48
0-shot FLIP-IT 527 9841 79.33 044 9998  99.86 294 9942  84.62 3.61  99.15 84.76 3.06
FLIP-MCL 495 9811 74.67 054 9998 100.00 425  99.07  84.62 231 99.63 9228 3.01




4. Experiments - Cross-domain FAS Performance

Table 3. Evaluation of cross-domain performance in Protocol 2, between CASIA-SUREF (8S), CASIA-CeFA (C), and WMCA (W). We run
each experiment 5 times under different seeds and report the mean HTER, AUC, and TPR@FPR=1%

CS—W SW—C CW—S Avg.
Method
TPR@ TPR@ TPR@

HTER AUC FPR=1% HTER AUC FPR=1% HTER AUC FPR=1% HTER

O-shot VIT (ECCV’ 22) [106] 7.98 97.97 73.61 11.13 95.46 47.59 13.35 94.13 49.97 | 10.82
5-shot ViT (ECCV’ 22) [16] 4.30 99.16 83.55 7.69 97.66 68.33 1226 9440 42.59 6.06
’ VIiTAF* (ECCV’ 22) [10] 291 99.71 92.65 6.00 98.55 78.56 11.60  95.03 60.12 5.12
FLIP-V 6.13 97.84 50.26 10.89 95.82 53.93 12.48 94.43 53.00 9.83

0-shot FLIP-IT 4.89 98.65 59.14 10.04 96.48 59.4 15.68 91.83 43.27 10.2
FLIP-MCL 4.46 99.16 83.86 9.66 96.69 59.00 11.71  95.21 57.98 8.61

Table 4. Evaluation of cross-domain performance in Protocol 3, for all the 12 different combinations between MSU-MFSD (M), CASIA-
MFSD (C), Replay Attack (I) and OULU-NPU (O). We run each experiment 5 times under different seeds and report the mean HTER.

Method C--1C-MC—-0I-CI--MI-0OM-CM—-IM—-00—-C0-=1 0—>M|Avg.
ADDA (CVPR’ 17) [10] 41.8 36.6 - 498 351 - 39.0 352 - - - - 39.6
DRCN (ECCV’ 16) [12] 444 27.6 - 489 420 - 28.9 36.8 - - - - 38.1
DupGAN (CVPR’ 18) [15] 424 334 - 46.5 362 - 27.1 354 - - - - 36.8
KSA (TIFS’ 18) [21] 393 15.1 - 123 333 - 9.1 349 - - - - 24.0
0-shot DR-UDA (TIFS’ 20) [45] 15.6 9.0 28.7 342 290 385 16.8 3.0 30.2 19.5 254 274 |23.1
MDDR (CVPR™ 20) [44] 26.1 20.2 247 392 232 336 343 8.7 31.7 21.8 27.6 220 |26.1
ADA (ICB’ 19) [43] 17.5 9.3 29.1 415 305 396 17.7 5.1 31.2 19.8 26.8 315 |250
USDAN-Un (PR’ 21) [19] 16.0 9.2 - 302 258 - 13.3 34 - - - - 16.3
GDA (ECCV’ 22) [67] 1510 5.8 - 297 208 - 12.2 25 - - - - 14.4
CDFTN-L (AAAI' 23) [50] 1.7 8.1 299 11.9 9.6 299 8.8 1.3 25.6 19.1 5.8 6.3 13.2
FLIP-V 15.08 1373 1234 430 9.68 7.87 0.56 3.96 4.79 209  5.01 6.00 |7.12
0-shot FLIP-IT 1233 15118 798 1.12 837 698 0.19 5.21 4.96 0.16 4.27 5.63 |6.03

FLIP-MCL 10.57  7.15 391 0.68 7.22 422 0.19 5.88 3.95 0.19 5.69 8.40 |4.84




4. Experiments - Ablation Studies

I
I L
I .
H o . LR, . Lee +heps |~ 1
Table 5. Comparing different ViT initialization methods for FAS. | Live/Spoof L
e ele ds . . . 1 b |
We use each initialization method with their default parameters | CEmete T | |1
| adapters |
and show the results for Protocol 1. | ﬁ :
l ————— l
| ocI—=M OMI — C OCM — 1 ICM—>0  Avg. | Transformer —
Method ——r I
| HTER AUC | HTER AUC | HTER AUC | HTER AUC | HTER E'fﬁﬁiﬂﬁﬁlﬁﬁ | Ememble 11
| (L coanen |
Scratch 18.32 87.36 40.05 61.13 19.22 BB.15 29.72  73.66 25.86 I Linear projection [ Attention :
BelT [1] 473 9846 | 786 9662 | 1351 9242 | 1519 9195 | 870 I [els] --. .-..'1-* :
ImageNet [16] 1.58 99.68 570 9891 925 9715 747 9842 6.00 I 1 1
CLIP (FLIP-V)| 3.79 9931 | 127 9975 | 471 9880 | 415 9876 348 : (b) Fine-tuning !
I
[1] BAO, Hangbo, et al. Beit: Bert pre-training of image transformers. arXiv preprint arXiv:2106. 08254 2021.
[16] Hsin-Ping Huang, et al. Adaptive transformers for robust few-shot cross-domain face anti-spoofing. ECCV 2022.

Table 7. Average HTER performance under different loss weights

for Protocol 1. Lye; = &Lee + BLsimcrLr + YLmse .
: p CLRTY Similarly, the performance degrades

when B = 0 or y = 0, verifying that the
(@f7) | L) A1L0) A0 (122 (155 self-supervised losses indeed facilitate
HTER ‘ 3.01 3.15 3.47 3.20 3.67 better generalization.




4. Experiments - Ablation Studies

Table 6. Impact of guidance with different text prompts (described
in Table 1). We use FLIP-IT and show the results for Protocol 1.

Prompt

| OCI - M OMI — C OCM — 1 ICM - O Avg.

| HTER AUC | HTER AUC | HTER

AUC |HTER AUC |HTER

Pl

P2

P3

P4

P5

P6
Ensemble

6.00 98.17 0.54 9997 3.60
832 96.38 105 99.90 2.98
4.68 9843 0.21  99.99 4.30
578 9791 0.65 9993 372
6.48  98.37 046  99.96 252
5.58  98.00 03 9999 2.85
527 9841 0.44 9998 2.94

99.19 347 99.24 3.40
99 48 5.74  98.39 4.52
99.06 4.07  99.02 3.31
99.21 3.54  99.28 3.42
99.55 324 9930 317
99.28 3.03 9946 294
99.42 3.61  99.15 3.06

Prompt No.

Real Prompts

Spoof Prompts

Pl
P2
P3
P4
P5
P6

This is an example of a real face
This is a bonafide face
This is a real face
This is how a real face looks like
A photo of a real face
This is not a spoof face

This is an example of a spoof face
This is an example of an attack face
This is not a real face
This is how a spoof face looks like
A photo of a spoof face
A printout shown to be a spoof face




4. Experiments — Visualization (Attention maps on spoof images)

i
: -
oCl = M oMl — C OCM — | ICM — O

Figure 3. Attention maps o* spoof images from different scenarios 1n Protocol 1: We observe that the attention highlights are on the
spoof-specific clues such as paper texture (M), edges of the paper (C), and moire patterns (I and O).

CW — S

SW — C

Figure 5. Attention maps onlspoof images from different scenarioslin Protocol 2: We observe that the attention highlights are on the
spoof-specific clues such as screen edges/ screen reflection (W), wrinkles in printed cloth (C), and cut-out eyes/nose (S).

FLIP-MCL model on the spoof
samples in Protocol 1 and Protocol 2.

Protocol 1 only print and replay
attacks - attention highlights are on
the spoof-specific clues such as
paper texture (M), edges of the paper
(C), and moire patterns (I and O).

Protocol 2 focuses on spoof clues
such as the edges of the
paper/screen or the reflection on the
screen.

https://en.wikipedia.org/wiki/Moir%C3%A9 pattern



https://en.wikipedia.org/wiki/Moir%C3%A9_pattern

4. Experiments — Visualization (Mis-Classified examples)

Some of the bonafide samples
are mis-classified as spoof due
to low image resolution and
lighting variations.

For the spoof samples, the mis-
classification could be attributed
to the adverse change in lighting
conditions.

Figure 4. Mis-Classified Examples in Protocol 1: |[Blue boxes indicate real faces mis-classified as spoof. [Orange boxes indicate spoof |
| faces mis-classified as real. | Samples in O have higher

resolution compared to
.. .- S

and this could be attributed to
SW —C CW — S

mis-classifying spoof as real.

The real samples being mis-
classified as spoof is either due
to a) Pixelization, b) extreme
pose changes, or c) darker
lighting conditions

Figure 6. Mis-Classified Examples in Protocol 2: |Blue boxes indicate real faces mis-classified as spoof. |Orange boxes indicate spoof |
| faces mis-classified as real. |




5.Conclusion

(+) Vision-language pre-training (e.g., CLIP) have excellent generalization compared to their
counterparts trained only on images. (ability for the face anti spoofing task)

(+) The rich multimodal representations learned by these models enable them to work well, even if only
the image encoder is finetuned and used for presentation attack detection.

(+) Text encoder further boosts generalizability.

(+) Multimodal contrastive learning also enhances the generalizability across data regimes and domain
gaps

(-) The additional computational overhead involved in invoking the text encoder during training

(-) To explore if these conclusions hold for other VLP foundation models

(-) Prompt learning is also a potential way to further improve performance
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. An unedited photograph of the individual
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. An original photo depicting the individual
. A veritable image of the person

. An unaltered photograph of the individual
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. A raw, unfiltered capture of the p¢
. An unadorned, straightforward pis
. A pure, unvarnished image of the
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. A direct, undistorted snapshot of
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o Target Spoof

. An unenhanced, natural picture ol il

1
2
3
4.
5
6
7

o Target Real

. A printed photo with is blur and lack of details
A photo of an A4 paper with a face printed on it
. An image of an A4 sheet of paper bearing a printed face 57
. A photo of a paper printed with an image of a person 58
. A hard copy of a photograph
8. A printed image on paper

9.

A blurred and indistinct printed photo

61

. e . . 62

An A4 paper with a facial image printed upon it 63
A paper bearing a printed photograph of an individual 4

Source Real

Source Spoof

(&
e

(b) w1th texual superv1snon

L

A photo prmt showmg mk smears

A printed image with a noticeable paper texture
. A photograph print with uneven ink distribution
. A printed photo, showing reduced dynamic range
. A face printout on textured paper

56. A photo print with a yellowish tint

64. A printout of a face, showing digital noise

A prlntout of a photo w1th reduced clarlty and detail

. A printed image of a person, cropped awkwardly
. A facial photo printed with low ink levels
. A digitally printed face with artifacts

. A printout of a photo with a watermark

. A printed photograph, slightly torn at the edge
. A print of a digital photo, with color bleeding
. A photo printed on thin, low-quality paper

MU, Lianrui, et al. TeG-DG: Textually Guided Domain Generalization for Face Anti-Spoofing. arXiv 2023.11.30

Text descriptions across different domains can be leveraged to bridge the gap between various visual domains



Thanks

Any Questions?

You can send mail to
Susang Kim(healessl@gmail.com)
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